Датчик давления во впускном коллекторе: Разбираемся в датчиках: Датчик абсолютного давления

Содержание

Датчик абсолютного давления воздуха: количество воздуха

Контроль количества поступающего в цилиндры воздуха — одна из основ нормальной работы современного двигателя. Для измерения количества воздуха используются датчики абсолютного давления — все об этих устройствах, их типах, конструкции и работе, а также о верном выборе и замене читайте в данной статье.

Датчик абсолютного давления воздуха — назначение и его место в двигателе

Датчик абсолютного давления воздуха (ДАД, MAP — Manifold absolute pressure sensor) — один из основных датчиков системы управления инжекторным и дизельным двигателем внутреннего сгорания; датчик для измерения текущего давления воздуха, поступающего во впускной коллектор мотора.

ДАД является составной частью системы контроля и управления силовым агрегатом, обеспечивая его нормальное функционирование в зависимости от текущего режима и нагрузок. Посредством данного прибора измеряется давление воздуха во впускном коллекторе двигателя — на основе этой информации электронный блок управления (ЭБУ) выполняет расчет количества воздуха, поступающего в цилиндры во время такта впуска, и в соответствии с алгоритмами изменяет работу силового агрегата (меняет пропорции воздуха и топлива в горючей смеси, момент впрыска и т.д.).

Следует отметить, что датчики абсолютного давления — это альтернатива датчикам массового расхода воздуха, на одном двигателе эти датчики и не устанавливаются.

От функционирования ДАД зависит функционирование мотора и возможность нормальной эксплуатации всего транспортного средства, поэтому в случае поломки или некорректной работы датчик должен быть как можно скорее заменен. Но прежде, чем покупать новый датчик, следует разобраться в типах и принципе работы этих устройств.

  • Датчик абсолютного давления воздуха ГАЗ,УАЗ ЗМЗ-406 ПЕКАР


    1 130 ₽

  • Датчик абсолютного давления воздуха ВАЗ-1118,2170,2190 DELPHI


    2 225 ₽

  • Датчик абсолютного давления воздуха SSANGYONG Kyron,Actyon,Actyon Sport,Rexton OE


    3 132 ₽

  • Датчик абсолютного давления воздуха ГАЗ,УАЗ УМЗ-4216 ЕВРО-3 DAEWOO Lanos ЭЛКАР


    1 070 ₽

  • Датчик абсолютного давления воздуха DAEWOO Nexia,Lanos ERA


    1 152 ₽

  • Датчик абсолютного давления воздуха ГАЗ,УАЗ ЗМЗ-406 АВТОТРЕЙД


    1 030 ₽

  • Датчик абсолютного давления воздуха ЯМЗ ЕВРО-3 АЭНК-К


    1 780 ₽

  • Датчик абсолютного давления воздуха MERCEDES Actros,Atego,Axor,Vario BOSCH


    7 031 ₽

  • Датчик абсолютного давления воздуха ГАЗ,УАЗ УМЗ-4216 ЕВРО-3 DAEWOO Lanos АВТОТРЕЙД


    920 ₽

  • Датчик абсолютного давления воздуха ВАЗ-1118,2170,2190 CARTRONIC


    1 050 ₽

Конструкция и принцип работы датчиков абсолютного давления воздуха

Датчик абсолютного давления воздуха, как можно понять по названию, измеряет абсолютное давление воздуха во впускном коллекторе относительно вакуума (точнее — некоторого низкого давления, которое можно условно считать вакуумом). Также существуют датчики относительного и дифференциального давлений (измеряют и сравнивают давление воздуха относительно атмосферного), однако они в данной статье не рассматриваются.

В настоящее время наиболее широкое распространение получили ДАД на основе микромеханических пьезорезистивных чувствительных устройствах (MEMS-сенсорах, от англ. Microelectromechanical systems — микроэлектромеханические системы, МЭМС). В данных датчиках используется чувствительный элемент, в котором сочетается микроэлектронная чувствительная часть, помещенная на подвижную мембрану (она выступает в роли механической части) — за счет их взаимодействия осуществляется измерение давления.

Существует несколько разновидностей микромеханических ДАД, но все они основаны на едином физическом принципе. В датчике присутствует герметичный объем воздуха, в котором поддерживается так называемое опорное давление — низкое давление (раз в 5-10 ниже нормального атмосферного), на основе которого осуществляется отсчет давления воздуха во впускном коллекторе. Данный объем воздуха закрыт диафрагмой (мембраной), на которой тем или иным способом выполнены полупроводниковые пьезорезисторы (тензорезисторы) — элементы, электрическое сопротивление которых зависит от деформации (растягивания или сжатия). Обычно на мембране располагается четыре пьезорезистора, включенных по мостовой схеме.

Работа такого датчика сводится к измерению электрического сопротивления пьезорезисторов при деформации диафрагмы, возникающей вследствие разности давлений между замкнутым объемом с опорным давлением и объемом с измеряемым давлением. Чем значительнее разница давлений, тем сильнее деформируются мембрана и расположенные на ней пьезорезисторы — в результате изменяется протекающий по пьезорезисторам ток, что и измеряется интегрированной в датчик оценочной схемой или электронным блоком. Зависимость тока и давления заранее устанавливается для каждого конкретного устройства, она входит в алгоритмы управления двигателем, записанные в электронном блоке (контроллере).

Конструктивно ДАД на основе MEMS-сенсоров могут отличаться. В частности, чувствительный элемент может выполняться на толстопленочной кремниевой подложке, в которой формируется замкнутый пузырек воздуха и тензорезисторы. Также существуют конструкции с большой по площади мембраной с пьезорезисторами, за которой располагается закрытый объем с опорным давлением.

Независимо от используемого чувствительного элемента, ДАД помещается в пластиковый корпус, с одной стороны которого выполнен патрубок с уплотнительным кольцом для подключения к впускному коллектору (напрямую или через трубопровод небольшой длины), а с другой — электрический разъем для подключения к ЭБУ.

Типы современных ДАД

ДАД отличаются типом выходного сигнала и назначением (применимостью).

По типу выходного сигнала приборы делятся на две группы:

  • Аналоговые;
  • Цифровые.

В первом случае датчик формирует аналоговый сигнал (он берется непосредственно от тензорезисторов), который поступает на электронный блок, где и подвергается обработке. Это наиболее простые по конструкции датчики, которые в новых автомобилях практически не используются, так как для работы с ними подходят только определенные электронные блоки управления двигателем.



Конструкция датчика абсолютного давления воздуха с интегрированной схемой оценки

Во втором случае в сам датчик интегрирована оценочная схема, которая измеряет и преобразует аналоговый сигнал от пьезорезисторов в цифровую форму — этот сигнал и поступает на электронный блок. Основу ДАД данного типа составляют специальные микросхемы, которые содержат в себе как сенсорный элемент, так и оценочную схему. На новые автомобили наиболее часто ставится именно этот тип датчика, так как он подходит для большинства контроллеров с соответствующим входом.

Отдельную группу составляют так называемые T-MAP-датчики — интегрированные датчики температуры и ДАД. В них помимо MEMS-сенсора помещен датчик температуры на основе обычного терморезистора, такой прибор измеряет давление и температуру, что позволяет точнее определять количество поступающего в цилиндры воздуха и вносить коррективы в работу многих вспомогательных систем (в том числе интеркулера для двигателей, оборудованных турбокомпрессором, и других).

По применимости ДАД делятся на две больших группы:

  • Для атмосферных двигателей — измеряют давление в пределах 0-1 атмосферы;
  • Для двигателей с турбонаддувом — измеряют давление в пределах 0-2 атмосферы и более.

Существуют и датчики для измерения давлений вплоть до 5-6 атмосфер, они чаще всего используются не во впускном коллекторе (так как в моторах такое давление встречается нечасто), а в пневматической системе автомобилей.

Также датчики имеют исполнение на напряжение питания 12 и 24 В, а для их подключения могут использоваться электрические разъемы различных типов (обычно — с ножевыми контактами под отдельные разъемы или групповые колодки, но существуют варианты и под штыревые колодки).

Как выбрать и заменить датчик абсолютного давления воздуха

ДАД играет одну из ключевых ролей в нормальной работе двигателя, при его неисправности нарушается работа мотора на всех режимах (повышенные обороты на холостых, «плавающие» обороты — все это в целом ухудшает динамику автомобиля), повышается дымность выхлопа, увеличивается шум и уровень вибраций, появляется запах бензина в выхлопе, а также наблюдается перерасход топлива. При появлении этих признаков следует провести диагностику устройства, и при его неисправности — произвести замену.

На замену следует выбирать ДАД только того типа и модели, что был установлен ранее, лучше всего это делать по каталожному номеру. Использование датчиков других типов в большинстве случаев просто невозможно вследствие разницы в установочных размерах и электрических характеристиках. Также можно выбирать и универсальные модели, используемые на определенных линейках двигателей, однако следует учитывать, что один и тот же датчик для разных двигателей может иметь разные каталожные номера и на гарантийных автомобилях их менять нельзя.

Особое внимание выбору нового датчика следует уделять в случае турбированного двигателя. Для таких моторов следует использовать специальные ДАД, рассчитанные на более высокие давления. Установка обычного датчика в этом случае нарушит работу силового агрегата.

Замена датчика абсолютного давления, как правило, довольно проста и не требует специального инструмента. Эта работа в общем случае выполняется в несколько шагов:

  1. Снять электрический разъем с датчика;
  2. Демонтировать датчик, выкрутив удерживающие его винты или болты;
  3. Отсоединить датчик от коллектора или патрубка;
  4. Установить новый датчик в обратном порядке (при этом не забыв установить новое уплотнительное кольцо или хомут).

Ремонт должен выполняться на остановленном двигателе и только после снятия клеммы с аккумулятора. После установки новый ДАД не требует калибровки или каких-либо настроек (хотя в определенных случаях это придется выполнить) и вся система сразу начинает работать.

Верный выбор и правильная замена датчика абсолютного давления воздуха — гарантия надежной работы силового агрегата на всех режимах.

Датчик абсолютного давления (ДАД) во впускном коллекторе

Современные авто оснащаются разнообразной электроникой для управления работой двигателя. Они оснащены разными датчиками. Одним из них является так называемый ДАД — датчик абсолютного давления воздуха во впускном коллекторе. По названию видно, что датчик измеряет разницу давления воздуха между вакуумом и воздухонаполненной средой. Для этой цели датчик давления содержит вакуумную камеру и сенсор.

Показания датчика абсолютного давления на впускном коллекторе используется для оптимизации воздушно-топливной смеси попадающей в камеру сгорания двигателя. Как это происходит? Данные датчика давления во впускном коллекторе помогают вычислить объем входящего воздуха для горючей смеси, и на основании этих данных происходит управление форсунками впрыска.

Неисправности ДАД

Признаки неисправности датчика, в первую очередь выявляются в переходе электронного блока управления авто в экстренный режим работы. На что это влияет? Во-первых, мотор будет работать не экономно, выявится перерасход бензина. Появляется небольшая детонация, ухудшается разгон автомобиля, появляется запах горючего из выхлопной системы. Далее, двигатель не сбавляет обороты несмотря на долгое прогревание и достижения рабочей температуры, рывки при переключения передач.

Что следует предпринять автомобилисту неопытному в таких делах? Следует знать, что ДАД во впускном коллекторе — достаточно надежный элемент, редко имеющий какую-либо неисправность. Поломки следует искать прежде всего в контактах и гибких шлангах, соединяющих штуцер и впускной коллектор. Нужно прежде всего рассмотреть разрыв гибких трубок или их загрязнение. Конечно же, при нарушений целостности трубок, их следует просто заменить а загрязнение почистить. Это все касается внешних неисправностей. Если все-таки что то не так с самим датчиком, даже не пытайтесь что либо предпринять самостоятельно! ДАД настолько сложное устройство, что безграмотное вскрытие просто разрушит его. Здесь выходом может быть полная замена прибора.

Диагностика

Как проверить датчик? Возможно ли самому найти ошибку? Ответ — такая возможность есть, для этого понадобится несколько вещей:

  • Вакуумный манометр;
  • Универсальный тестер;
  • Вакуумный насос;
  • Тахеометр.

При наличии вышеприведенных инструментов и устройств, можно приступить к диагностическим мероприятиям, они нижеследующие:

  1. Допустим у вас стоит аналоговый датчик. В первую очередь следует присоединить переходник к вакуумному шлангу между ДАД и впускным коллектором, манометр крепится напрямую к переходнику.
  2. Стартуем двигатель, он некоторое время работает вхолостую. Дальше нужно наблюдать давление впускного коллектора. Если он не превосходит значение в 529 мм ртутного столба, необходимо проверить целостность вакуумного шланга, нет ли в нем разрывов или зажимов/перегибов которые мешают свободному движению воздуха? Далее следует проверить ремень распредвала. Дополнительными причиной может послужить заводская поломка диафрагмы самого датчика.
  3. После эксплуатации манометра, можно заменить его на вакуумный насос. Попробуйте с помощью насоса создать в коллекторе давление до 55-560 мм ртутного столба и сразу прекратить откачку. В случае исправного состояния датчика, уровень разряжения может продержаться вплоть до 30 секунд. это симптомы нормальной работы прибора, в противном случае возможно придется заменить датчик целиком.
  4. Если у вас цифровой датчик, вам понадобится тестер, находящийся в режиме измерения напряжения.
  5. Включаем зажигание автомобиля, находим в датчике контакты питания. К тестеру подводим провод от сигнального контакта датчика абсолютного давления. При нормальной работе, напряжение будет около 2,5 В. Значение выше или ниже этой нормы является показателем неисправностей с датчиком.
  6. Далее нужно изменить режим тестера на тахеометр. Отсоединяем вакуумный шланг, плюс тахеометра соединяем к сигнальному проводу, отрицательные контакты к заземлению. Если значение тахеометра приближается к 4400-4850 оборотов в минуту, то это показатель нормальной работы датчика.
  7. Следующий шаг потребует использование вакуумного насоса. Соединяем его к шлангу датчика. Необходимо наблюдать какое значение дает тахеометр при изменения уровня разрежения в датчике. Если датчик исправен, то показания обоих приборов будет демонстрировать норму.
  8. Далее, отключите вакуумный насос, если тахеометр остановится на значениях 4400 и 4900 оборотов в минуту — это показатель нормальной работы датчика. В случае отклонения тахеометра от этих значении, это можно считать сигналом неисправности датчика.

Ремонт

Что следует предпринять в случае мелких неисправностей датчика абсолютного давления? Следует сказать, что мелкие ремонтные работы вполне по силам рядовому автовладельцу. Если датчик имеет серьезные неисправности, то кроме полной его замены других выходов нет. Но замена прибора вполне по силам самому автовладельцу. Для этого, следует знать где находится датчик. Необходимо разъединить шланг между коллектором и датчиком, отсоединить комплекс проводов и убрать крепежи в виде болтов. Далее нужно заменить датчик на новый, выполняя все операции наоборот.

Если присутствуют мелкие дефекты, допустимо выполнение следующих операции:

  1. Прежде всего, как описано выше снимается датчик. Сняв внешний кожух нужно смотреть на видимые признаки неисправности.
  2. Если присутствуют загрязнения, ржавчина и др., то следует их очистить. Дальше необходимо проверить электрические контакты. После всех манипуляции нужно просушить прибор.
  3. После всех манипуляции с очисткой рекомендуется применение силиконового герметика в местах закрепления и более продолжительная сушка в условиях тепла.
  4. Только после истечении суток разрешается сборка деталей датчика. Во время сборки следует особо следить за герметичностью креплении.

После всех манипуляции следует не откладывая проверить работоспособность датчика. Заведите машину, если старт прошел без всяких эксцессов, то можно считать что мелкий ремонт прошел успешно. В противном случае можно быть уверенным о наличии серьезной неисправности датчика, и проблему следует решать обращением к специалистам.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Как проверить датчик абсолютного давления. 3 способа проверки ДАД

При подозрении в неисправности датчика абсолютного давления воздуха в коллекторе автолюбителей интересует вопрос о том, как проверить ДАД своими руками. Сделать это можно двумя способами — с помощью мультиметра, а также используя программные средства.

Содержание:

Однако для выполнения проверки ДАД с помощью мультиметра необходимо иметь под рукой электрическую схему автомобиля с тем, чтобы знать, к каким контактам подсоединять щупы мультиметра.

Симптомы неисправности ДАД

При полном или частичном выходе датчика абсолютного давления (его еще называют MAP сенсор, Manifold Absolute Pressure) из строя внешне поломка проявляется в следующих ситуациях:

  • Высокий расход топлива. Это связано с тем, что датчик передает некорректные данные о давлении воздуха во впускном коллекторе на ЭБУ, и соответственно, блок управления подает команду на подачу топлива в большем, чем надо количестве.
  • Снижение мощности двигателя. Это проявляется в слабом разгоне и недостаточной тяге при езде машины в гору и/или в загруженном состоянии.
  • В районе дроссельной заслонки постоянно ощущается стойкий запах бензина. Это вызвано тем, что происходит постоянный его перелив.
  • Нестабильные обороты холостого хода. Их значение то падает то повышается без нажатия на педаль акселератора, а во время движения чуствуются пинки и автомобиль дергается.
  • «Провалы» двигателя на переходных режимах, в частности, при переключении передач, трогании машины с места, перегазовках.
  • Проблемы с запуском двигателя. Причем, как «на горячую», так и «на холодную».
  • Формирование в памяти электронного блока управления ошибок с кодами p0105, p0106, p0107, p0108 и p0109.

Большинство из описанных признаков неисправности являются общими, и могут быть вызваны другими причинами. Поэтому необходимо всегда выполнять комплексную диагностику, и начинать нужно в первую очередь со сканирования ошибок в ЭБУ.

Как работает датчик абсолютного давления

Перед тем как проверить датчик абсолютного давления воздуха необходимо в общих чертах понимать его устройство и принцип работы. Это облегчит сам процесс проверки и точность результата.

Так, в корпусе датчика расположена вакуумная камера с тензорезистором (резистор, изменяющий свое электрическое сопротивление в зависимости от деформации) и мембраной, который подключены с помощью мостового соединения к электрической схеме автомобиля (грубо говоря, к электронному блоку управления, ЭБУ). В результате работы двигателя давление воздуха меняется, что фиксируется мембраной и сравнивается с вакуумом (отсюда и название — датчик «абсолютного» давления). Информация об изменении давления передается на ЭБУ, на основании чего блок управления принимает решение о количестве подаваемого топлива для образования оптимальной топливовоздушной смеси. Полный цикл работы датчика выглядит следующим образом:

  • Под воздействием разницы давлений мембрана деформируется.
  • Указанная деформация мембраны фиксируется тензорезистором.
  • С помощью мостового соединения изменяемое сопротивление преобразуется в изменяемое напряжение, которое и передается на электронный блок управления.
  • На основе полученной информации ЭБУ корректирует количество топлива, подаваемое на форсунки.

Современные датчики абсолютного давления подсоединяются к ЭБУ при помощи трех проводов — питания, «массы» и сигнального провода. Соответственно, суть проверки зачастую сводится к тому, чтобы при помощи мультиметра проверить значение сопротивления и напряжения на указанных проводах при различных условиях работы двигателя в целом и датчика в частности. Некоторые датчики MAP имеют четыре провода. Кроме указанных трех проводов у них добавляется четвертый, по которому передается информация о температуре воздуха во впускном коллекторе.

В большинстве автомобилей датчик абсолютного давления расположен непосредственно на штуцере впускного коллектора. На более старых машинах он может располагаться на гибких воздушных магистралях и закреплен на корпусе автомобиля. В случае тюнинга турбированного мотора ДАД зачастую располагают на воздуховодах.

Если давление во впускном коллекторе низкое, то и выдаваемое датчиком сигнальное напряжение также будет низким, и наоборот, по мере возрастания давления растет и выходное напряжения, передаваемое в качестве сигнала от ДАД к ЭБУ. Так, при полностью открытой заслонке, то есть, при низком давлении (приблизительно 20 кПа, отличается у разных машин) значение напряжения сигнала будет находиться в пределах 1…1,5 Вольта. При закрытой заслонке, то есть, при высоком давлении (около 110 кПа и выше) соответствующее значение напряжения будет равно 4,6…4,8 Вольта.

Проверка датчика ДАД

Проверка датчика абсолютного давления в коллекторе сводится к тому что сначала необходимо убедится в его чистоте, а соответственно чувствительности к изменению потока воздуха и потом уже узнать его сопротивление и выдаваемое напряжение при работе двигателя.

Чистка датчика абсолютного давления

Обратите внимание, что в результате своей работы датчик абсолютного давления постепенно забивается грязью, которая блокирует нормальную работу мембраны, что может вызвать частичный выход ДАД из строя. Поэтому перед проверкой датчика его нужно обязательно демонтировать и выполнить чистку.

Для выполнения чистки датчик необходимо демонтировать с его посадочного места. В зависимости от марки и модели автомобиля методы крепления и место расположения будут отличаться. У турбированных двигателей обычно имеется два датчика абсолютного давления, один во впускном коллекторе, другой на турбине. Обычно крепится датчик при помощи одного-двух крепежных болтов.

Чистку датчика необходимо выполнять аккуратно, с помощью специальных карбклинеров или подобных чистящих средств. В процессе чистки нужно очистить его корпус, а также контакты. При этом важно не повредить уплотнительное кольцо, элементы корпуса контакты и мембрану. Нужно просто брызнуть внутрь небольшое количество чистящего средства и вылить его обратно вместе с грязью.

Очень часто такая простая чистка уже восстанавливает работу MAP сенсора и производить дальнейшие манипуляции уже нет потребности. Так что после чистки можно поставить датчик давления воздуха на место и проверить работу двигателя. Если же она не помогла, то стоит перейти к проверке ДАД тестером.

Проверка датчика абсолютного давления мультиметром

Для проверки узнайте из руководства по ремонту какой провод и контакт за что отвечает в конкретном датчике, то есть, где провода питания, «массы» и сигнальный (сигнальные в случае четырехпроводного датчика).

Чтобы разобраться как проверить датчик абсолютного давления мультиметром необходимо для начала убедится что проводка между ЭБУ и самим сенсором цела и нигде не коротит, ведь от этого будет зависеть точность результата. Делается это тоже при помощи электронного мультиметра. С его помощью необходимо проверить как целостность проводов на обрыв, так и целостность изоляции (определить значение сопротивления изоляции на отдельно взятых проводах).

Рассмотрим выполнение соответствующей проверки на примере автомобиля Chevrolet Lacetti. У него к датчику подходят три провода — питание, «масса» и сигнальный. Сигнальный провод идет прямиком на электронный блок управления. «Масса» же соединена с минусами других датчиков — датчика температуры воздуха, поступающего в цилиндры и датчика кислорода. Питающий провод соединен с датчиком давления в системе кондиционирования. Дальнейшая проверка датчика ДАД выполняется по следующему алгоритму:

  • Необходимо отсоединить минусовую клемму с аккумуляторной батареи.
  • Отсоединить колодку с электронного блока управления. Если рассматривать именно Лачетти, то у этого авто она находится под капотом с левой стороны, возле аккумулятора.
  • Снять фишку с датчика абсолютного давления.
  • Установить на электронном мультиметре режим измерения электрического сопротивления с диапазоном приблизительно 200 Ом (зависит от конкретной модели мультиметра).
  • Проверить значение сопротивления щупов мультиметра, просто соединив их между собой. На экране будет показано значение их сопротивления, которое в дальнейшем нужно будет учитывать при выполнении проверки (обычно оно составляет около 1 Ом).
  • Один щуп мультиметра необходимо подключить к контакту номер 13 на колодке ЭБУ. Второй щуп аналогично подключить к первому контакту колодки датчика. Таким образом «прозванивается» провод «массы». Если провод целый и у него не повреждена изоляция, то значение сопротивления на экране прибора будет составлять приблизительно 1…2 Ома.
  • Далее нужно подергать жгуты с проводами. Это делается для того, чтобы убедиться, что провод не поврежден и меняет свое сопротивление в процессе движения автомобиля. При этом показания на мультиметре не должны изменяться и находиться на том же уровне, что и в статике.
  • Одним щупом подключиться к контакту номер 50 на колодке блока, а вторым щупом подключиться к третьему контакту на колодке датчика. Таким образом «прозванивается» провод питания, по которому на датчик подается стандартные 5 Вольт.
  • Если провод целый и не поврежденный, то значение сопротивления на экране мультиметра будет также равно приблизительно 1…2 Ома. Аналогично необходимо подергать жгут с тем, чтобы исключить повреждение провода в динамике.
  • Подключить один щуп к контакту номер 75 на колодке ЭБУ, а второй — к сигнальному контакту, то есть, контакту номер два на колодке датчика (среднему).
  • Аналогично, если провод не поврежден, то сопротивление провода должно составлять около 1…2 Ом. Также нужно подергать жгут с проводами, чтобы убедиться в надежности контакта и изоляции проводов.

После проверки целостности проводов и их изоляции необходимо проверить, приходит ли питание на датчик от электронного блока управления (питающие 5 Вольт). Для этого нужно обратно подсоединить колодку ЭБУ к блоку управления (установить ее на ее посадочное место). После этого ставим назад клемму на АКБ и включаем зажигание не запуская двигатель. Щупами мультиметра, переключеного в режим измерения постоянного напряжения, касаемся к контактам датчика — питающему и «массе». Если питание подается, то на экране мультиметра будет значение около 4,8…4,9 Вольт.

Аналогично проверяется напряжение между сигнальным проводом и «массой». Перед этим нужно запустить двигатель. Далее необходимо переключиться щупами к соответствующим контактам на датчике. Если датчик в порядке, то на экране мультиметра будет информация о напряжении на сигнальном проводе в диапазоне от 0,5 до 4,8 Вольта. Низкое напряжение соответствует холостым оборотам двигателя, а высокое — высоким оборотам двигателя.

Обратите внимание, что пороговых значений напряжения (0 и 5 Вольт) на мультиметре в рабочем состоянии не будет никогда. Это сделано специально для диагностики состояния ДАД. Если напряжение будет равно нулю, то электронный блок управления выдаст ошибку р0107 — низкое напряжение, то есть, обрыв провода. Если напряжение будет высоким, то ЭБУ расценит это как короткое замыкание — ошибка р0108.

Проверка с помощью шприца

Проверить работу датчика абсолютного давления можно с помощью медицинского одноразового шприца объемом 20 «кубиков». Также для проверки нужен будет герметичный шланг, который нужно подсоединить к демонтированному датчику и непосредственно к горловине шприца.

Удобнее всего использовать вакуумный шланг угла корректировки зажигания для автомобилей ВАЗ с карбюраторным двигателем.

Соответственно, для проверки ДАД необходимо демонтировать датчик абсолютного давления с его посадочного места, однако фишку оставить подключенной к нему. В контакты лучше всего вставить металлическую скрепку, а щупы (или «крокодилы») мультиметра уже подсоединять к ним. Проверку питания необходимо выполнять аналогично, как описано в предыдущем разделе. Значение питания должно находиться в пределах 4,8…5,2 Вольта.

Для проверки сигнала с датчика необходимо включить зажигание автомобиля, но двигатель не запускать. При нормальном атмосферном давлении значение напряжения на сигнальном проводе будет приблизительно 4,5 Вольта. При этом шприц должен находиться в «выжатом» состоянии, то есть, его поршень должен быть полностью погружен в тело шприца. Далее для проверки необходимо вытаскивать поршень из шприца. Если датчик работоспособен, то при этом напряжение будет понижаться. В идеале при сильном разрежении значение напряжения опустится до значения 0,5 Вольта. Если же напряжение опустилось лишь до 1,5…2 Вольт и ниже не опускается — датчик неисправен.

Обратите внимание, что датчик абсолютного давления — хотя и надежные устройства, но достаточно хрупкие. Они являются неремонтопригодными. Соответственно, при выходе датчика из строя его необходимо заменить на новый.

Спрашивайте в комментариях. Ответим обязательно!

Замена датчика давления во впускном коллекторе

Услуга по замене датчика давления во впускном коллекторе в компании KOLOBOX.

МАР-сенсор, как также называется этот прибор, контролирует давление во впускном коллекторе. Информацию, как и другие датчики, этот элемент передает электронному блоку управления, который в свою очередь передает сигнал микроконтроллеру. При помощи этих данных производится контроль поступления воздуха и топливной смеси в рампу.

Корректная работа ДДВК обеспечивает стабильную работу двигателя автомобиля, поэтому важно своевременно обратиться в сервисный центр, при обнаружении признаков его неисправности. К негативным последствиям выхода из строя МАР-сенсора относится неустойчивая работоспособность двигателя его “троение”, неожиданное прекращение работы.

Какие случае требует незамедлительной замены датчика давления во впускном коллекторе?

Исход поломки МАР-сенсора зависит от программного обеспечения, установленном в электронном блоке управления двигателем автомобиля. Программное обеспечение — это комплекс программ, установленных производителем этого устройства.

Переключения блока управления в экстренный режим — более выгодный результат неисправности датчика абсолютного давления коллектора. Усредненные характеристики, на которых будет работать автомобильный двигатель, приведет к повышению потребления топлива, возрастанию вероятности детонации (возгорания).

Негативный результат выхода из строя датчика — полное прекращение функционирования мотора, отказ в запуске.

Стоит отметить надежность этого элемента по сравнению со шлангом — соединительным элементом впускного коллектора и штуцера. Неисправность его заключается в разрыве или загрязнении, которые можно решить заменой или очисткой.

Главная причина, вынуждающая произвести замену МАР-сенсора — поломка его внутренней составляющей. Вскрытие и ремонт в большинстве случаев приводит датчик в непригодность, поэтому рекомендуется только замена на новый. Особенно, если учитывать, что современные автомобили не оснащены разборными ДДВК.

Опытные профессионалы сервисного центра KOLOBOX произведут замену датчика давления во впускном коллекторе с заботой о вашем автомобиле и времени!

Перейти к прайс-листу

Записаться на шиномонтаж (услуги)

Адреса торговых точек

Устройство, принцип действия, диагностика датчика абсолютного давления во впускном коллекторе Manifold Absolute Pressure sensor (MAP-sensor)

Почти все системы управления двигателем, в которых не применяется датчик расхода воздуха, оборудованы датчиком абсолютного давления во впускном коллекторе (датчик разрежения).

В таких системах, на основании данных о давлении и температуре воздуха во впускном коллекторе, блок управления двигателем рассчитывает массу воздуха, содержащуюся в каждом сантиметре кубическом внутреннего объёма впускного коллектора. При каждом такте впуска, цилиндр «всасывает» разрежённый воздух из впускного коллектора, объём которого приблизительно равен внутреннему объёму цилиндра двигателя. Зная внутренний объём цилиндра двигателя (в cm3) и предварительно рассчитав плотность всасываемого цилиндром воздуха (в g/cm3), блок управления двигателем рассчитывает массу воздуха (в граммах), попадающего в цилиндр во время такта впуска. В соответствии с рассчитанной массой потребляемого двигателем воздуха, блок управления двигателем формирует импульсы управления топливными форсунками соответствующей длительности, достигая приготовления топливовоздушной смеси с составом, близким к заданному.

Точность расчёта массы потребляемого двигателем воздуха по его давлению и температуре невысока, так как объём потребляемого воздуха в значительной мере зависит от состояния цилиндропоршневой группы и газораспределительного механизма. Поэтому, в подобных системах управления двигателем для обеспечения приготовления топливовоздушной смеси с точно заданным составом, очень важным фактором является исправность функционирования датчика кислорода.

На многих автомобилях, датчик разрежения крепится к кузову автомобиля в моторном отсеке, а его входной штуцер соединяется с внутренним объёмом впускного коллектора посредством гибкого трубопровода.

Независимо от наличия в системе управления двигателем датчика расхода воздуха, на двигателях оборудованных турбонаддувом и / или компрессором датчик абсолютного давления во впускном коллекторе (датчик давления / разрежения) применяется всегда. Здесь, кроме прочего, показания датчика используются для измерения и регулирования величины избыточного давления, нагнетаемого турбокомпрессором и / или механическим компрессором. Такой датчик обычно крепится непосредственно к впускному коллектору. В корпус датчика часто бывает встроен датчик температуры воздуха во впускном коллекторе.Датчики давления могут быть штатно установлены на автомобиле для измерения давления в топливном баке, давлений в системе EGR, давления в системе кондиционирования воздуха в салоне, в тормозной системе, в шинах автомобиля…

Принцип действия датчика даления.

Большинство автомобильных датчиков давления преобразовывают значение давления на входном штуцере датчика в соответствующую ему величину выходного напряжения. Встречаются датчики, где в зависимости от входного давления изменяется частота выходного переменного напряжения (например, датчик абсолютного давления во впускном коллекторе производства FORD). В качестве датчиков давления во впускном коллекторе применяются датчики абсолютного давления. Внутри датчика абсолютного давления имеется вакуумная камера, из которой на этапе изготовления датчика был откачан воздух. Такой датчик «сравнивает» давление на входном штуцере с давлением в вакуумной камере — от этой разницы давлений и зависит выходной сигнал датчика.

  1. Точка подключения зажима типа «крокодил» осциллографического щупа.
  2. Точка подключения пробника осциллографического щупа для получения осциллограммы выходного напряжения датчика.
  3. Датчик абсолютного давления.
  4. Выключатель зажигания.
  5. Аккумуляторная батарея.

Обычно, с уменьшением величины абсолютного давления во впускном коллекторе (или, другими словами, с увеличением величины разрежения во впускном коллекторе) выходное напряжение датчика уменьшается. Но встречаются датчики, где зависимость выходного напряжения от входного давления обратно-пропорциональна. В качестве датчиков атмосферного давления применяются датчики абсолютного давления. Датчик атмосферного давления может быть выполнен как отдельный элемент системы управления двигателем, или может быть размещён непосредственно внутри корпуса блока управления двигателем. На некоторых автомобилях применяется датчик давления топлива в топливной рейке.

Типовые неисправности датчика абсолютного давления во впускном коллекторе.

В зависимости от устройства системы управления двигателем (наличие или отсутствие датчика расхода воздуха), неполадки в работе датчика могут привести как к переключению блока управления на аварийный режим работы, так и вовсе к невозможности запуска и работы двигателя. Применяемые в современных системах управления двигателем датчики давления обладают очень высокой надёжностью. В большинстве случаев, причиной неправильной работы датчика абсолютного давления во впускном коллекторе является неисправность соединения входного штуцера датчика с внутренним объёмом впускного коллектора. Часто соединяющий гибкий трубопровод разрывается, реже «закоксовывается» (либо сам трубопровод, либо штуцер во впускном коллекторе). Поэтому, при проведении проверки датчика абсолютного давления во впускном коллекторе, необходимо обязательно проверить исправность трубопровода. Необходимость замены датчика иногда возникает по причине неисправности датчика температуры воздуха, который может быть конструктивно объединён с датчиком абсолютного давления во впускном коллекторе. Тем не менее, встречаются и случаи выхода из строя самого датчика абсолютного давления. При необходимости, можно провести проверку датчика. Для этого необходимо обеспечить подвод к штуцеру датчика различных значений давления / разрежения в допустимых для данного датчика пределах (путём запуска двигателя, если это возможно, или другими вспомогательными средствами), контролируя при этом выходной сигнал датчика.  

Осциллограмма выходного напряжения исправного датчика абсолютного давления впускном коллекторе. Пуск двигателя и работа на холостом ходу без нагрузки.

Выходное напряжение датчика изменяется пропорционально величине давления во впускном коллекторе. В данном случае, с увеличением разрежения во впускном коллекторе, выходное напряжение датчика уменьшается. <> Характеристика датчика абсолютного давления во впускном коллекторе производства FORD имеет следующую зависимость: —   при включенном зажигании и остановленном двигателе (разрежение во впускном коллекторе при этом отсутствует) частота выходного напряжения датчика составляет около 160 Hz; —   при работе прогретого до рабочей температуры двигателя на холостом ходу без нагрузки (величина разрежения во впускном коллекторе составляет ~0,65 Bar), частота выходного напряжения датчика составляет около 105 Hz; —   при увеличенной до 3-х тысяч оборотов в минуту частоте вращения коленчатого вала двигателя на холостом ходу (величина разрежения во впускном коллекторе составляет ~0,7 Bar), частота выходного напряжения датчика составляет около 100 Hz.  

Осциллограмма выходного напряжения исправного датчика абсолютного давления во впускном коллекторе производства FORD. Зажигание включено, двигатель остановлен.

Дифференциальный датчик давления.

В некоторых системах управления двигателем, для измерения величины расходуемых системой EGR (Exhaust Gas Recirculation) отработавших газов, применяется дифференциальный датчик давления. Дифференциальный датчик давления отличается от датчика абсолютного давления наличием двух штуцеров — внутренняя камера датчика не загерметизирована, а соединена с дополнительным, вторым штуцером. За счёт этого, дифференциальный датчик давления сравнивает между собой давления на входных штуцерах; выходной сигнал датчика пропорционален этой разнице давлений. Система EGR служит для уменьшения количества выбрасываемых двигателем в атмосферу вредных окислов азота. Система EGR подводит часть отработавших газов к впускному коллектору, размешивая топливовоздушную смесь отработавшими газами. За счёт этого уменьшается температура сгорания топливовоздушной смеси и как следствие, уменьшается количество выбрасываемых двигателем в атмосферу окислов азота. Измерение величины потока отработавших газов от клапана EGR к впускному коллектору при помощи дифференциального датчика давления осуществляется следующим образом. В патрубке, соединяющем выход клапана EGR с впускным коллектором, имеется калиброванное сужение. Это сужение создаёт незначительное препятствие протекающим по патрубку отработавшим газам, вследствие чего, давление газов перед сужением оказывается несколько выше давления газов за сужением. Чем больше величина потока отработавших газов, протекающих через сужение, тем большая возникает разница давлений газов перед сужением и за ним. Входные штуцеры дифференциального датчика давления соединены с патрубком клапана EGR — один штуцер соединён с полостью до калиброванного сужения, а второй штуцер соединён с полостью за калиброванным сужением. С увеличением потока отработавших газов от клапана EGR к впускному коллектору, увеличивается разница давлений подводимых к входным штуцерам дифференциального датчика давления, датчик преобразовывает эту разницу давлений в напряжение. Таким образом, выходное напряжение дифференциального датчика давления оказывается пропорциональным величине потока отработавших газов от клапана EGR к впускному коллектору двигателя.

Приложение 1

Характеристики некоторых датчиков абсолютного давления

Разрежение GM, V FORD, Hz
мм рт.ст. Bar  
004,80156…159
25,70,0344,52 
51,40,0674,46 
77,10,1034,26 
102,80,1374,06 
128,50,1713,88141…143
154,20,2063,66 
179,90,2403,50 
205,60,2743,30 
231,30,3083,10 
2570,3432,94127…130
282,70,3772,76 
308,40,4112,54 
334,10,4452,36 
359,80,4802,20 
385,50,5142,00114…117
411,20,5481,80 
436,90,5821,62 
462,60,6171,42108…109
488,30,6511,20 
5140,6851,10102…104
539,70,7200,88 
565,40,7540,66 

Приложение 2

Таблица переводов из одной системы в другую

  кПа мм рт.ст миллибар PSI
1 атм. 101,3257601013,2514,6960
1 kPa17,50062100,145038
1 мм рт.ст.0,13332211,333220,0145038
1 миллибар0,10,4506210,0145038
1 PSI6,8947351,714868,94731
1 мм вод.ст.0,0098060,073559,8*18-80,0014223

   

Датчик абсолютного давления: проверка, признаки неисправности

Все современные автомобили оснащены электронной системой управления двигателем, которая регулирует работу силового агрегата при помощи информации, снимаемой со специальных датчиков. Одним их таких устройств выступает датчик давления воздуха или МАР-сенсор, установленный во впускном коллекторе. Он реагирует на все изменения давления во впускном такте, а ЭБУ двигателя, в зависимости от показаний прибора, обеспечивает приготовление оптимальной горючей смеси.

Назначение и принцип работы датчика абсолютного давления

Датчик давления предназначен для измерения абсолютного давления, то есть давления воздуха относительно вакуума. Полученные данные используются системой управления двигателем для вычисления плотности воздуха и его расхода при оптимизации приготовления воздушно-топливной смеси. Прибор выступает альтернативой расходомера воздуха, а в некоторых моделях авто работает совместно с расходомером.

В современных датчиках применяют две технологии измерения: микромеханическую и тонкопленочную. Первая – более прогрессивная, так как производит более точные измерения, и большинство датчиков изготовлены именно по ней. При наличии в двигателе турбонаддува, между компрессором и коллектором ставят дополнительный датчик, регулирующий давление наддува в зависимости от потребности двигателя, который конструктивно идентичен ДАД.

В конструкции датчика давления воздуха присутствует 2 камеры – атмосферная, связанная со впускным коллектором, и вакуумная. Там же расположены 4 тензорезистора, прикрепленных к диафрагме, и электронный чип. Давление воздуха действует на диафрагму, и она перемещает тензорезисторы, которые в зависимости от положения меняют сопротивление, что в итоге влияет на величину импульса от чипа к блоку управления.

Чувствительные полупроводники для повышения импульса соединены по схеме моста, а исходящее напряжение изменяется от 1 до 5 В. Полученное напряжение позволяет ЭБУ определить давление во впускном коллекторе – чем оно больше, тем показатель считается выше. Исходя из типа датчика, он выдает различный тип сигнала – цифровой или аналоговый. В аналоговом приборе дополнительно устанавливают аналогово-цифровой преобразователь.

Датчик получает результаты о давлении воздуха следующим образом:

  1. Воздушный поток в коллекторе давит на диафрагму прибора, и она изгибается.
  2. При механическом растяжении диафрагмы на тензорезисторах меняется сопротивление, то есть наблюдается пьезорезистивный эффект.
  3. Пропорционально сопротивлению тензорезисторов, меняется напряжение.
  4. Полупроводники в датчике соединены по мостовой схеме и очень чувствительны. Электрическая схема, расположенная в приборе, мостовое напряжение усиливает, в итоге на выходе оно изменяется в пределах 1-5 В.
  5. Исходя из того, какое выходное напряжение поступает в блок управления, рассчитывается уровень давления на впускном клапане. Более высокое напряжение соответствует более высокому давлению.

Признаки неисправности датчика абсолютного давления

О возникшей неисправности ДАД свидетельствуют следующие признаки:

  1. Увеличение расхода топлива. Прибор подает в блок управления данные о высоком давлении воздуха, которое фактически гораздо ниже. По этой причине БУ подает в цилиндры богатую смесь.
  2. Падает динамика двигателя, не улучшающаяся при прогреве.
  3. При работе мотора из выхлопной трубы ощущается запах топлива.
  4. Работающий двигатель даже в теплое время года выдает белый выхлоп.
  5. Двигатель в холостом режиме работы долго не сбрасывает обороты.
  6. При переключении передач заметны рывки машины.
  7. Нестабильная работа двигателя во всех режимах работы, наличие посторонних шумов, зачастую переходящих в гул.

Возможные причины неисправности

Датчик абсолютного давления – достаточно надежное устройство, но иногда он выходит из строя, вызывая переключение работы двигателя в аварийный режим, и даже препятствуя запуску мотора. Причин неполадок в работе ДАД существует несколько:

  1. Плохое соединение датчика и входного штуцера.
  2. Закоксованный трубопровод, который имеет достаточно гибкую конструкцию.
  3. Поломка датчика температуры воздуха, который связан с ДАД, а иногда объединен с ним в одном корпусе.
  4. Разгерметизация вакуумного шланга по причине повреждения или отключения от датчика.
  5. Обрыв контакта «масса».
  6. Неисправность внутри датчика.

Проверка датчика абсолютного давления

В различных моделях авто конструкция датчика может отличаться, и, следовательно, алгоритм проверки тоже. Следующая обобщенная инструкция позволит исследовать большинство типов приборов. Для этого понадобятся:

  1. Простой вакуумный манометр.
  2. Тестер или вольтметр.
  3. Вакуумный насос.
  4. Тахометр.

Проверка датчика давления воздуха состоит из следующих этапов:

  1. Для проверки аналогового датчика, его переходник подключается к вакуумному шлангу между датчиком давления и впускным коллектором. К переходнику также подсоединяют манометр.
  2. Двигатель запускают и дают ему некоторое время поработать на холостых оборотах. При показателе разрежения в коллекторе менее 529 мм рт. ст., проверяют целостность вакуумного шланга, так как через повреждения на нем утрачивается часть воздуха. Также следует обратить внимание на состояние диафрагмы датчика, на которой могут присутствовать как заводские, так и приобретенные при эксплуатации дефекты.
  3. После снятия показаний манометра, его заменяют на вакуумный насос, после чего создают разрежение 55-56 мм рт. ст. и прекращают откачку. При исправном датчике разрежение будет сохраняться 25-30 сек. Если требование не выполняется – датчик подлежит замене.
  4. При проверке цифрового датчика пользуются тестером в режиме вольтметра.
  5. Включают зажигание, находят контакты заземления и питания. К вольтметру подключают провод, соединенный с сигнальным контактом тестируемого датчика. При его нормальной работе напряжение будет составлять около 2,5 В. При наличии неисправностей – отличаться в большую или меньшую сторону.
  6. Тестер переключают в режим работы тахометра и отсоединяют от ДАД вакуумный шланг. Положительный ввод подключают к сигнальному проводу, а минус – к заземлению. При исправном датчике тахометр выдаст результат – 4400-4850 об/мин.
  7. Снова используется вакуумный насос, который подключается к датчику давления. Насосом постоянно меняют разрежение в приборе и следят за показаниями тахометра. При исправном датчике разрежение и показатели тахометра будут стабильными.
  8. При отключении вакуумного насоса, тахометр останавливается на показателе 4400-4900 об/мин. Если показания отличаются от указанных в ту или иную сторону – датчик неисправен.

Ремонт

После диагностики неисправности ДАД, приступают к ее устранению. При мелкой поломке, поддающейся ремонту, прибор оставляют. Если прибор выдает неправильные показания – необходима его полная замена. Конструкция датчика на проведение ремонта не рассчитана, и все действия, направленные мастером на устранение неисправностей, проводятся на его страх и риск. Но стоимость нового прибора достаточно высока, и все манипуляции в случае успеха становятся оправданными.

Ремонт датчика осуществляют в определенной последовательности:

  1. Ножом или другим острым инструментом снимают крышку прибора, после чего выявляют местонахождение неисправности.
  2. Контакты чистят от загрязнений и ржавчины, проверяют надежность их соединения, а после чистки просушивают, заливают силиконовым герметиком, и снова сушат. На собранном приборе герметиком заделывают все стыки.
  3. Прибор устанавливают на автомобиль и проверяют его исправность. Быстрый запуск двигателя и его ровная работа означают исправность прибора. Если ремонт не принес ожидаемых результатов – датчик меняют на новый.

Датчик абсолютного давления (ДАД): как это работает

На чтение 10 мин. Просмотров 64.2k. Опубликовано

Датчик абсолютного давления (ДАД или manifold absolute pressure — MAP) используется блоком управления двигателем (ЭБУ) для расчёта нагрузки двигателя. Датчик генерирует сигнал, который пропорционален вакууму во впускном коллекторе. ЭБУ использует этот входной сигнал, вместе с несколькими другими, для расчета правильного количества топлива для впрыска в цилиндры.

Общая информация

Когда двигатель работает под нагрузкой, вакуум на впуске падает, т. к. дроссель открывается широко. Двигатель всасывает больше воздуха, что требует бОльшего количества топлива для поддержания соотношения топливо-воздушной смеси.

Фактически, когда ЭБУ считывает сигнал большой нагрузки от ДАД, это обычно приводит к тому, что топливная смесь становится немного богаче, чем обычно, поэтому двигатель может производить больше энергии. В то же время блок управления слегка изменяет угол опережения зажигания (УОЗ), чтобы предотвратить детонацию, которая может повредить двигатель и снизить производительность.

Когда условия меняются и автомобиль движется под небольшой нагрузкой, накатом или замедляясь, от двигателя требуется меньше мощности. Дроссельная заслонка открыта немного или может быть закрыта, что приводит к увеличению вакуума на впуске.

Датчик MAP обнаруживает это. ЭБУ обедняет топливную смесь и изменяет момент зажигания, чтобы уменьшить расход топлива.

Где находится датчик абсолютного давления

ДАД может располагаться в нескольких местах в зависимости от марки и модели автомобиля. MAP сенсор может быть установлен на моторном щите, внутреннем крыле или впускном коллекторе.

Соединение датчика производится непосредственно через отверстие в коллекторе или с помощью штуцера и шланга.

На двигателях с турбонаддувом датчик абсолютного давления чаще всего устанавливается непосредственно на впускной коллектор.

Как работает ДАД

Датчики MAP называются датчиками абсолютного давления в коллекторе, а не датчиками вакуума на впуске, поскольку они измеряют давление (или его отсутствие) внутри впускного коллектора. Когда двигатель не работает, давление внутри впускного коллектора такое же, как и внешнее атмосферное давление.

Когда двигатель запускается, внутри коллектора создается вакуум за счет движения поршней и ограничением, создаваемым дроссельной заслонкой. При полностью открытом дросселе при работающем двигателе вакуум на впуске падает почти до нуля, а давление внутри впускного коллектора снова почти равно внешнему атмосферному давлению.

Атмосферное давление обычно варьируется от 700 до 800 мм ртутного столба (93 – 105 кПа) в зависимости от вашего местоположения и климатических условий. Переводя в фунты на квадратный дюйм значение атмосферного давления будет равно 14,7 psi (pound-force per square inch).

Атмосферное давление, скриншот с яндекса

Вакуум внутри впускного коллектора двигателя, для сравнения, может варьироваться от нуля до 70 кПа или более в зависимости от условий эксплуатации.

Вакуум на холостом ходу всегда высокий и обычно составляет 50 – 65 кПа (от 400 до 500 мм рт. ст.) в большинстве транспортных средств. Самый высокий уровень вакуума возникает при торможении с закрытым дросселем. Поршни пытаются всасывать воздух, но закрытый дроссель перекрывает подачу воздуха, создавая высокий вакуум во впускном коллекторе (обычно на 13-17 кПа выше, чем на холостом ходу).

Когда дроссель внезапно открывается, как при ускорении, двигатель всасывает большое количество воздуха, и вакуум падает до нуля. Затем вакуум медленно поднимается, когда дроссель закрывается.

Когда ключ зажигания включается первый раз, прежде чем запустить двигатель, блок управления проверяет показания ДАД, чтобы определить атмосферное (барометрическое) давление.

Таким образом, датчик MAP может выполнять функцию датчика атмосферного давления (BARO). Затем ЭБУ использует эту информацию для регулировки воздушно-топливной смеси, чтобы компенсировать изменения давления воздуха из-за высоты и / или погоды.

Некоторые автомобили используют отдельный барометрический датчик для этой цели, а другие используют комбинированный, который измеряет оба давления и называется BMAP.

Читайте также: Датчик температуры охлаждающей жидкости — как работает, проблемы, как проверять.

На двигателях с турбонаддувом ситуация немного сложнее, потому что при наддуве на самом деле может быть положительное давление во впускном коллекторе. Но датчику MAP это неважно, потому что он просто контролирует абсолютное давление внутри впускного коллектора.

На двигателях с электронной системой впрыска «скорость-плотность» воздушного потока оценивается, а не измеряется непосредственно датчиком воздушного потока. Контроллер анализирует сигнал ДАД, а также обороты двигателя, положение дроссельной заслонки, температуру охлаждающей жидкости и температуру окружающего воздуха, чтобы оценить, сколько воздуха поступает в двигатель.

Блок управления также может принимать во внимание сигнал обогащения / обеднения от датчика кислорода и положение клапана EGR, прежде чем вносить необходимые поправки в воздушно-топливную смесь. Этот подход к управлению топливом не так точен, как в системах, использующих датчик массового расхода воздуха (ДМРВ), но в тоже время он не так сложен и не слишком дорог.

Смотрите видео о том, как работает датчик абсолютного давления в коллекторе:

Другое преимущество систем с ДАД состоит в том, что они менее чувствительны к утечкам вакуума. Любой воздух, который попадает в двигатель после ДМРВ, является «неизмеренным» и нарушает баланс, необходимый для поддержания соотношения воздушно-топливной смеси.

В системе с MAP датчиком, он обнаружит небольшое падение вакуума, вызванное утечкой воздуха, и контроллер компенсирует это, добавляя больше топлива.

На многих двигателях GM, которые имеют датчик массового расхода воздуха (MAF), датчик MAP также используется в качестве резервного в случае потери сигнала воздушного потока и для контроля работы клапана EGR. Отсутствие изменений в сигнале датчика MAP, когда включен клапан рециркуляции EGR, указывает на неисправность системы.

Как устроен ДАД

По выходному сигналу датчики абсолютного давления бывают:

  • С аналоговым выходом — широко используются. Их напряжение пропорционально нагрузке двигателя.
  • С цифровым выходом — используются в таких системах, как Ford EEC IV. Цифровой MAP сенсор посылает сигналы прямоугольной формы с определенной частотой. Когда нагрузка увеличивается, частота также увеличивается, и время между импульсами (миллисекунды) уменьшается. Блок управления очень быстро реагирует на цифровой сигнал, потому что нет необходимости преобразовывать его из аналогового.

Датчик MAP состоит из двух камер, разделенных гибкой диафрагмой. Одна камера является «эталонным воздухом» (она может быть герметична или соединена с атмосферой), а другая — соединена с впускным коллектором прямым соединением или с помощью резинового шланга.

Чувствительная к давлению электронная схема внутри датчика MAP контролирует движение диафрагмы и генерирует сигнал напряжения, который изменяется пропорционально давлению. Это производит аналоговый сигнал напряжения, который обычно колеблется от 1 до 5 вольт.

Аналоговые датчики MAP имеют трехпроводной разъём: заземление, опорное напряжение 5 В от ЭБУ и сигнальное напряжение. Выходное напряжение обычно увеличивается, когда дроссель открывается и вакуум падает.

ДАД, который выдаёт 1 или 2 вольта на холостом ходу, может показывать от 4,5 вольт до 5 вольт при полностью открытой дроссельной заслонке. Выход обычно изменяется от 0,7 до 1,0 вольт на каждые 15 кПа изменения вакуума.

Признаки неисправности ДАД

Неисправный датчик MAP имеет серьезные последствия для контроля топлива, выбросов выхлопных газов автомобиля и экономии топлива. Симптомы плохого или неисправного ДАД включают в себя:

Увеличение расхода топлива

Датчик MAP, который измеряет высокое давление во впускном коллекторе, указывает ЭБУ на высокую нагрузку двигателя. Это приводит к увеличению впрыска топлива в двигатель.

Это, в свою очередь, увеличивает расход топлива. Это также увеличивает количество выбросов углеводородов и окиси углерода из автомобиля в окружающую атмосферу. Углеводороды и окись углерода являются одними из химических компонентов смога.

Недостаток мощности

Датчик MAP, который измеряет низкое давление во впускном коллекторе, указывает ЭБУ на низкую нагрузку двигателя. Блок управления реагирует уменьшением количества топлива, впрыскиваемого в двигатель.

Хотя вы можете заметить увеличение расхода топлива, вы также заметите, что ваш двигатель не такой мощный, как прежде. При уменьшении подачи топлива в двигатель температура в камере сгорания увеличивается. Это увеличивает количество NOx (оксидов азота) в двигателе. NOx также является химическим компонентом смога.

Увеличение токсичности выхлопных газов

Неисправный датчик MAP приведет к тому, что ваш автомобиль не пройдет проверку выхлопных газов на техосмотре. Выбросы из выхлопной трубы могут показывать высокий уровень углеводородов, высокий уровень NOx, низкий уровень CO2 или высокий уровень окиси углерода.

Проверка датчика абсолютного давления

Во-первых, убедитесь, что разрежение в коллекторе двигателя на холостом ходу соответствует техническим характеристикам. Вакуум может быть необычно низким из-за подсоса воздуха, задержки зажигания, ограничения выхлопа (засоренный катализатор) или утечки EGR (клапан EGR не закрывается на холостом ходу).

Слабое разрежение на впуске или избыточное противодавление в выхлопной системе могут обмануть датчик MAP, указывая на наличие нагрузки на двигатель. Это может привести к обогащению топливной смеси.

С другой стороны, ограничение на впуске воздуха (например, загрязнённый воздушный фильтр) может привести к превышению нормальных показаний вакуума. Это приведет к тому, что MAP сенсор будет передавать сигнал о низком уровне нагрузки и, возможно, к состоянию обедненной смеси.

Исправный ДАД должен показывать атмосферное давление при повороте ключа зажигания до запуска двигателя. Это значение можно посмотреть с помощью диагностического сканера или адаптера ELM327 с программой Torque и сравнить с фактическим показанием атмосферного давления, чтобы увидеть, совпадают ли они. Текущее атмосферное давление можно посмотреть на сервисе Яндекса.

Проверьте вакуумный шланг датчика на наличие изломов или утечек. Затем используйте ручной вакуумный насос, чтобы проверить сам ДАД на герметичность. Датчик должен держать вакуум. Любая утечка говорит о необходимости замены MAP сенсора.

Неполадка датчика давления, потеря сигнала из-за проблем с проводкой или сигнал датчика, выходящий за пределы нормального напряжения или диапазона частот, обычно устанавливают диагностический код неисправности (DTC) и включают индикатор Check Engine.

Проверка сканером OBD2

На автомобилях после 1996 года могут диагностироваться коды ошибок OBD II с P0105 по P0109. Это будет указывать на неисправность в цепи датчика MAP.

Выходное напряжение MAP датчика можно считывать в реальном времени и сравнивать со спецификациями. По сути, вы должны увидеть быстрое и резкое изменение сигнала датчика давления, когда дроссель на холостом ходу открывается и закрывается. Отсутствие изменений будет указывать на неисправность датчика или проводки.

Если показания датчика низкие или отсутствуют совсем, нужно проверить опорное напряжение, приходящее на датчик. Оно должно быть очень близко к 5 вольтам. Также проверьте заземление. Если опорное напряжение низкое — проверьте жгут проводов и разъём, возможен плохой контакт, повреждение или коррозия.

Диагностические сканеры также отображают «рассчитанное значение нагрузки», которое можно использовать для определения, работает ли датчик MAP или нет.

Значение нагрузки рассчитывается с использованием входных данных от ДАД, датчика положения дроссельной заслонки (ДПДЗ / TPS), ДМРВ и частоты вращения двигателя. Значение должно быть низким на холостом ходу и высоким — когда двигатель находится под нагрузкой. Отсутствие изменения значения или превышение нормальных показаний на холостом ходу может указывать на проблему с датчиком абсолютного давления, ДПДЗ или ДМРВ.

Проверка мультиметром

Датчик давления также может быть испытан на стенде путем подачи вакуума с помощью ручного вакуумного насоса. Выходной сигнал должен падать, начиная с 5 вольт опорного напряжения. Вместо насоса можно использовать пустой медицинский шприц через шланг.

Таблица для проверки датчика давления аналогового типа:

Приложенный вакуум, мБарНапряжение, вольтПоказания ДАД, Бар
04.3 – 4.91.0 ± 0.1
2003.20.8
4003.20.6
5001.2 – 2.00.5
6001.00.4

Таблица показаний ДАД атмосферного двигателя:

СостояниеНапряжение, вольтПоказания ДАД, БарВакуум, Бар
Полностью открытый дроссель4.351.0 ± 0.10
Зажигание включено4.351.0 ± 0.10
Холостой ход1.50.28 – 0.550.72 – 0.45
Двигатель остановлен1.00.20 – 0.250.80 – 0.75

Таблица показаний ДАД турбированного двигателя:

СостояниеНапряжение, вольтПоказания ДАД, БарВакуум, Бар
Полностью открытый дроссель2.21.0 ± 0.10
Зажигание включено2.21.0 ± 0.10
Холостой ход0.2 – 0.60.28 – 0.550.72 – 0.45

Выходное напряжение аналогового датчика MAP может быть измерено непосредственно с помощью мультиметра или осциллографа. Частотный сигнал цифрового ДАД также может быть считан с помощью цифрового мультиметра, если он имеет функцию измерения частоты, или осциллографа. Измерительные провода приборов должны быть подключены к сигнальному выводу и заземлению.

НЕ ИСПОЛЬЗУЙТЕ обычный вольтметр для проверки цифрового датчика Ford BP / MAP, так как это может повредить электронику внутри датчика. Этот тип ДАД может быть диагностирован только с помощью цифрового мультиметра в режиме измерения частоты, осциллографом или диагностическим прибором.

Признаки неисправного или неисправного датчика абсолютного давления в коллекторе (датчик MAP)

Датчик абсолютного давления в коллекторе (MAP) используется модулем управления трансмиссией (PCM) для ввода нагрузки двигателя. PCM использует этот, а также другие входные данные для расчета правильного количества топлива для впрыска в цилиндры.

Датчик MAP измеряет абсолютное давление во впускном коллекторе двигателя. На уровне моря атмосферное давление составляет около 14,7 фунтов на квадратный дюйм.Когда двигатель выключен, абсолютное давление во впускном канале равно атмосферному давлению, поэтому MAP покажет около 14,7 фунтов на квадратный дюйм. При идеальном вакууме датчик MAP покажет 0 фунтов на квадратный дюйм. Когда двигатель работает, движение поршней вниз создает вакуум во впускном коллекторе (для целей управления двигателем, когда технический специалист говорит «вакуум», на самом деле они говорят о давлении, которое меньше атмосферного). При работающем двигателе разрежение во впускном коллекторе обычно составляет около 18–20 дюймов ртутного столба.При 20 “Hg датчик MAP покажет около 5 фунтов на квадратный дюйм. Это связано с тем, что датчик MAP измеряет «абсолютное» давление на основе идеального вакуума, а не атмосферного давления.

Неисправный датчик MAP имеет серьезные последствия для контроля топлива, выбросов выхлопных газов автомобиля и экономии топлива. Симптомы неисправного или неисправного датчика MAP включают:

1. Чрезмерный расход топлива

Датчик MAP, который измеряет высокое давление во впускном коллекторе, указывает на высокую нагрузку двигателя на PCM.Это приводит к увеличению количества впрыскиваемого в двигатель топлива. Это, в свою очередь, снижает общую экономию топлива. Это также увеличивает количество выбросов углеводородов и окиси углерода из вашего автомобиля в окружающую атмосферу. Углеводороды и окись углерода являются одними из химических компонентов смога.

2. Недостаток мощности

Датчик MAP, который измеряет низкое давление во впускном коллекторе, указывает на низкую нагрузку двигателя на PCM. PCM реагирует уменьшением количества топлива, впрыскиваемого в двигатель.Хотя вы можете заметить увеличение экономии топлива, вы также заметите, что ваш двигатель не такой мощный, как был раньше. За счет уменьшения количества топлива в двигателе температура камеры сгорания увеличивается. Это увеличивает количество выделяемых в двигателе NOx (оксидов азота). NOx также является химическим компонентом смога.

3. Неудачный тест на выбросы

Плохой датчик MAP приведет к тому, что ваш автомобиль не пройдет тест на выбросы. Выбросы из выхлопной трубы могут указывать на высокий уровень углеводородов, высокое производство NOx, низкий уровень CO2 или высокий уровень окиси углерода.

Хорошо обученный технический специалист, такой как специалисты YourMechanic, способен диагностировать и отремонтировать вышедший из строя датчик MAP.

7 признаков неисправности датчика MAP

В современных двигателях модуль управления двигателем (ECM) измеряет или рассчитывает расход воздуха с помощью датчика массового расхода воздуха (MAF) или абсолютного давления в коллекторе (MAP). Двигатели с турбонаддувом могут использовать оба, но в двигателях без наддува обычно используется один или другой. Если датчик MAP выходит из строя или сломан, ECM — и, следовательно, двигатель — не может работать должным образом.Поддерживая и ремонтируя датчик MAP, вы обеспечите бесперебойную работу двигателя.

Как работает датчик MAP

Этот датчик MAP устанавливается непосредственно на впускной коллектор, но другие могут быть подключены с помощью шланга.

Бенджи Джрев / Flickr / CC BY 2.0

Контроллер ЭСУД использует данные датчика MAP для выполнения важных расчетов, таких как нагрузка двигателя, импульс топливной форсунки и опережение зажигания. В состоянии покоя датчик MAP считывает атмосферное давление на уровне моря (29,93 дюйма рт. Ст.). Поскольку атмосферное давление меняется в зависимости от погоды и высоты, контроллер ЭСУД вычисляет эту «нулевую» точку непосредственно перед запуском двигателя, точно настраивая схему искры и впрыска топлива с этой точки.

На холостом ходу давление на впуске обычно находится в пределах 16-22 дюймов рт. Ст. Поскольку это давление ниже атмосферного, воздух врывается в воздухозаборник. Когда водитель использует двигатель для торможения, давление может упасть до 10 дюймов рт. Ст. Однако при ускорении открытый корпус дроссельной заслонки позволяет воздуху врываться быстрее, увеличивая давление на впуске. При полностью открытой дроссельной заслонке давление на впуске и атмосферное давление почти равны.

Признаки неисправности датчика MAP

Проблемы с датчиком MAP могут вызвать диагностический код неисправности и проверить свет двигателя.

baloon111 / Getty Images

Датчики MAP выходят из строя из-за засорения, загрязнения или повреждения. Иногда тепло двигателя «переваривает» электронику датчика MAP или дает трещины в вакуумных линиях. Если датчик MAP выходит из строя, ECM не может точно рассчитать нагрузку на двигатель, что означает, что соотношение воздух-топливо станет либо слишком богатым (больше топлива), либо слишком бедным (меньше топлива).

Итак, как вы узнаете, что ваш датчик MAP выходит из строя? Вот основные проблемы, на которые следует обратить внимание:

  1. Плохая экономия топлива.Если ECM показывает низкий уровень вакуума или его отсутствие, он предполагает, что двигатель работает с высокой нагрузкой, поэтому он сливает больше топлива и увеличивает время зажигания. Это приводит к чрезмерному расходу топлива, плохой экономии топлива и, возможно, к детонации.
  2. Отсутствие мощности. Если контроллер ЭСУД показывает высокий вакуум, он предполагает, что нагрузка на двигатель мала, поэтому он сокращает впрыск топлива и замедляет синхронизацию зажигания. С одной стороны, снизится расход топлива, что, кажется, хорошо. Однако, если расходуется слишком мало топлива, двигателю может не хватать мощности для разгона и обгона.
  3. Неудачная проверка выбросов. Поскольку впрыск топлива не соответствует нагрузке на двигатель, сломанный датчик MAP может привести к увеличению вредных выбросов. Избыток топлива приводит к более высоким выбросам углеводородов (HC) и оксида углерода (CO), в то время как недостаточное количество топлива может привести к более высоким выбросам оксидов азота (NO x ).
  4. Грубый холостой ход. Недостаточный впрыск топлива приводит к нехватке топлива в двигателе, что приводит к резкому холостому ходу и, возможно, даже к случайным пропускам зажигания в цилиндрах.
  5. Жесткий запуск.Точно так же чрезмерно богатая или обедненная смесь затрудняет запуск двигателя. Если вы можете запустить двигатель только тогда, когда ваша нога находится на акселераторе, у вас, вероятно, проблема с датчиком MAP.
  6. Неуверенность или заедание. Когда вы начинаете с остановки или пытаетесь выполнить маневр обгона, нажатие на газ может не доставить вам никакого удовольствия, особенно если ECM выдает обедненную смесь на основе ошибочных показаний датчика MAP.
  7. Проверьте свет двигателя. В зависимости от возраста вашего автомобиля диагностические коды неисправностей датчика MAP могут варьироваться от простой цепи или неисправности датчика до неисправностей корреляции или диапазона.Неисправный датчик MAP ничего не считывает, в то время как неисправный датчик MAP может выдавать данные ECM, которые не имеют смысла, например, низкий вакуум в двигателе, когда датчик положения дроссельной заслонки (TPS) и датчик положения коленчатого вала (CKP) показывают двигатель на праздный.

Проблемы с датчиком MAP

Сканирующий прибор Bluetooth OBD2 — недорогой, но мощный инструмент для диагностики всех видов проблем двигателя, таких как неисправный датчик карты.

Ален ван ден Хенде / PublicDomainPictures / Public Domain

Функциональный датчик MAP — важная часть обслуживания вашего автомобиля.Если вы подозреваете, что у вас проблема с датчиком MAP, сначала проверьте следующие элементы.

  1. Электрооборудование. Начните с проверки разъема и проводки. Разъем должен быть надежно подсоединен, а контакты — чистыми и прямыми. Коррозия или погнутые пальцы могут вызвать проблемы с сигналом датчика MAP. Точно так же проводка между ECM и датчиком MAP должна быть исправной. Истирание может вызвать короткое замыкание, а обрыв может вызвать обрыв цепи.
  2. Шланг. Некоторые датчики MAP подсоединяются к впускному коллектору шлангом.Убедитесь, что шланг датчика MAP подсоединен и не поврежден. Также убедитесь, что в порте нет нагара или другого мусора, который может заблокировать шланг и привести к плохим показаниям датчика MAP.
  3. Датчик. Если датчик подключен правильно, как электрически, так и к впускному коллектору, используйте диагностический прибор или измеритель напряжения и вакуумный пистолет для проверки выходного сигнала датчика MAP. Вам нужно будет найти диаграмму, чтобы измерить напряжение в условиях отсутствия вакуума и полного вакуума. Если выходной сигнал датчика MAP не соответствует диаграмме, можно с уверенностью сказать, что датчик следует заменить.

Почему моя машина трясется на холостом ходу?

Обычно при запуске двигателя вы ожидаете плавного холостого хода, как когда он был новым, но годы и мили имеют тенденцию изнашивать вещи, и ваш двигатель может работать или чувствовать себя немного грубым. Итак, почему ваша машина трясется на холостом ходу? Вот некоторые возможные проблемы, вызывающие тряску автомобиля, и то, что вы можете с ними поделать.

Проблемы с опорой двигателя

Если опора двигателя сломается или рухнет, она передаст вибрации двигателя на остальную часть автомобиля.Paday / Getty Images

Ваш двигатель не прикреплен к раме прочно, иначе вы уже почувствуете гораздо большую вибрацию двигателя. Подушки двигателя сделаны из полуэластичной резины, которая поглощает вибрации, но если они изношены, треснуты или сломаны, вибрации могут передаваться непосредственно на раму. Немного более сложные, чем резиновые опоры, амортизаторы двигателя используют давление воздуха или гидравлическую жидкость для уменьшения вибрации двигателя. Вы также можете услышать необычный стук или удары при ускорении или переключении на пониженную передачу.

На некоторых двигателях гашение колебаний и движения двигателя идет дальше с активными опорами двигателя, обычно с вакуумным приводом, управляемыми модулем управления двигателем (ECM). Это немного сложнее, включая электрические и электронные элементы управления, клапаны переключения вакуума, вакуумные линии и шланги. Если активная опора не приводится в действие должным образом, вибрации могут передаваться на раму.

Решение: Отремонтируйте или замените неисправную подушку двигателя, клапан, шланги или проводку.

Проблемы с холостым ходом

Отложения углерода могут препятствовать прохождению воздуха, влияя на регулировку холостого хода.

Aidan / Flickr

Большинство легковых и грузовых автомобилей работают на холостом ходу от 600 до 1000 оборотов в минуту (об / мин), что в основном достаточно быстро, чтобы двигатель не глохнул, сглаживая импульсы мощности от каждого цилиндра и включив кондиционер и генератор переменного тока. Скорость холостого хода может регулироваться клапаном или корпусом дроссельной заслонки, увеличивая скорость холостого хода для высоких нагрузок.Нагар может засорить клапан регулировки холостого хода (IAC), что приведет к плохому контролю холостого хода.

На некоторых автомобилях клапаны холостого хода используются в дополнение к электронному управлению IAC, хотя современные автомобили полностью заменили их полным электронным управлением дроссельной заслонкой. Переключатель холостого хода, если он есть, представляет собой клапан переключения вакуума, открывающий вакуумную линию для увеличения скорости холостого хода, обычно установленный на линии рулевого управления с усилителем. Если клапан неисправен или вакуумная линия зажата или забита, поворот рулевого колеса приведет к перегрузке двигателя без «холостого хода» или увеличения оборотов для компенсации, что приведет к низкой частоте вращения холостого хода и увеличению вибрации.

Решение: Очистите корпус дроссельной заслонки и очистите или замените IAC. Очистите, отремонтируйте или замените переключатель холостого хода или вакуумные линии.

Проблемы с зажиганием

Изношенные свечи зажигания могут не воспламенить топливовоздушную смесь так же эффективно, что приведет к слабому сгоранию или пропуску зажигания.

Хорхе Вильяльба / Getty Images

В каждом цилиндре одна или две свечи зажигания создают искру, воспламеняющую топливовоздушную смесь. В течение срока службы свечи зажигания она может сработать 500 миллионов раз, каждый раз испаряя несколько молекул с электродов и увеличивая зазор свечи зажигания.Прорыв масла, богатая смесь или слишком много топлива могут засорить свечи. Если зазор слишком велик или свечи загрязнены, они могут не сработать правильно, что приведет к снижению производительности одного или нескольких цилиндров.

Большинство современных автомобилей имеют одну катушку зажигания на свечу зажигания, управляемую контроллером ЭСУД. Старые автомобили могут иметь одну катушку зажигания на пару свечей зажигания, системы отработанного искра, управляемые ECM, или распределитель с механическим управлением с одной катушкой и проводами свечи зажигания. В любом случае слабая катушка зажигания может не подавать достаточно напряжения для правильного зажигания цилиндров, что приводит к слабому сгоранию.

Во всех системах зажигания есть какие-то провода свечи зажигания, длинные ли они, например, на распределителе и некоторых системах с отработанной искрой, или очень короткие, такие как системы с катушкой на свече (COP). В проводах свечей зажигания используется прочная изоляция, чтобы удерживать высокое напряжение, превышающее 15000 В, от «прыжка на землю», а не проскока через зазор свечи зажигания, но изношенная или поврежденная изоляция может вызвать слабую искру или пропуски зажигания в цилиндре и грубый холостой ход. Это может быть особенно заметно в определенных влажных условиях и под дождем.

Решение: Заменить свечи зажигания, катушку зажигания или провода свечи зажигания. Устранить утечки масла или охлаждающей жидкости.

Углеродные отложения

Отложения нагара могут привести к возникновению горячих точек и серьезному повреждению двигателя.

Раймонд Спеккинг / Викимедиа

Внутренняя часть цилиндра может стать особенно горячей, и система охлаждения двигателя и моторное масло в большей или меньшей степени контролируют ее, но нагар может привести к возникновению горячих точек, дизельному выхлопу, гудению, розовому покрытию или детонации.Обычно бензин воспламеняется от тепла искры, но точки перегрева могут превышать эту температуру, что приводит к преждевременному воспламенению, чрезмерному шуму и вибрации двигателя. В крайнем случае это может привести к серьезному повреждению двигателя.

Решение: Начните с полной очистки двигателя. В тяжелых случаях может потребоваться разборка двигателя.

Плохое сжатие

Плохая компрессия может быть связана с проблемами с клапанами, поршневыми кольцами, фазами газораспределения или прокладкой головки.

© 2006 Льюис Коллард / Викимедиа

Когда ваш двигатель работает, как раз тогда, когда поршень сжимает топливовоздушную смесь, свеча зажигания загорается и воспламеняет ее.Воспламеняющаяся смесь быстро расширяется, заставляя поршень опускаться, что преобразуется во вращательное движение коленчатым валом. Однако, если в одном цилиндре есть утечка, плохая компрессия приведет к снижению выходной мощности, разбалансировке двигателя и возникновению вибрации.

Решение: Может потребоваться замена прокладки головки блока цилиндров, ремонт клапана, замена поршневого кольца или другой ремонт двигателя.

Заедание клапана рециркуляции ОГ

Отложения нагара могут вызвать заедание клапана рециркуляции выхлопных газов (EGR).

Moosealope / Flickr

Чтобы снизить температуру цилиндров и предотвратить образование определенных токсичных выбросов, клапан рециркуляции выхлопных газов (EGR) направляет выхлопные газы обратно во впускное отверстие, разбавляя кислород. На холостом ходу клапан рециркуляции ОГ должен быть закрыт, но нагар может привести к их заеданию. На холостом ходу разбавленный всасываемый воздух не содержит достаточно кислорода для полного сгорания, что приводит к случайным пропускам зажигания и вибрациям.

Решение: Очистите или замените клапан рециркуляции ОГ.

Проблемы с топливной форсункой

Застрявшая или протекающая топливная форсунка может исказить регулировку подачи топлива и вывести двигатель из строя, что приведет к вибрациям.

кирилллуц / Getty Images

Топливные форсунки отвечают за подачу точного количества топлива, но загрязнения или износ могут привести к утечкам или заеданию топливных форсунок, впрыскивая слишком много или слишком мало топлива в цилиндр. В зависимости от серьезности утечка топливной форсунки может вывести двигатель из строя или привести к пропуску зажигания в цилиндре.

Решение: Начните с очистки топливной форсунки. Может потребоваться замена топливной форсунки.

Проблемы с синхронизацией

Если ремень ГРМ растягивается или пропускает зубец, это может повлиять на работу двигателя.

EyeEm / Getty Images

Ремень ГРМ синхронизирует распредвалы с коленчатым валом, но ровно на половину скорости. Ремни ГРМ и цепи ГРМ могут растягиваться, что приводит к «задержке» фаз газораспределения. Пропущенный зуб — обычно это наблюдается только у зубчатых ремней — может «опережать» или «замедлять» фазы газораспределения.Если двигатель плохо дышит, это может вызвать проблемы на холостом ходу, включая пропуски зажигания и вибрацию.

Поскольку условия эксплуатации двигателей меняются в зависимости от потребностей, им нужно по-разному «дышать» в разных условиях. Требования к воздушному потоку на крейсерской скорости сильно отличаются от требований к резкому ускорению и даже больше, чем на холостом ходу. Регулируемые фазы газораспределения (VVT) могут учитывать некоторые из этих различий, позволяя двигателю работать наилучшим образом в зависимости от требований водителя.Датчики и гидравлические клапаны используются для изменения VVT, но неисправности могут привести к ошибочному применению VVT и грубым колебаниям холостого хода.

Решение: Отремонтировать или заменить компоненты привода ГРМ. Очистите, отремонтируйте или замените клапан VVT или проводку.

Амортизатор коленчатого вала

Этот тяжелый шкив помогает гасить вибрации двигателя, прежде чем они достигнут остальной части автомобиля.

EyeEm / Getty Images

Поскольку несколько цилиндров срабатывают в разное время во время каждого оборота, нетрудно сделать вывод, что выходная мощность не постоянная, а пульсация.Каждая пульсация исходит из разных цилиндров, сглаженных массой двигателя, уравновешивающими валами, если они есть, и другими демпфирующими компонентами, такими как опоры двигателя, описанные ранее. На многих двигателях передний шкив коленчатого вала служит демпфером. Внутренняя часть и внешняя часть соединены резиной, которая поглощает вибрации, но если резина сломана, вибрации не будут гаситься, вместо этого передаваясь на остальную часть автомобиля.

Решение: Заменить демпфер коленчатого вала.

Проблемы со сцеплением

Проблемы с выключением сцепления могут вызвать чрезмерное сопротивление двигателю.

GregorBister / Getty Images

На автомобилях с механической коробкой передач сцепление включается и выключается водителем. Если сцепление затягивается или не выключается полностью, возможно, из-за утечки в гидравлической системе или растяжения троса, это создает нагрузку на двигатель. Поскольку двигатель не работает на холостом ходу для компенсации, это может привести к тряске и тряске вашего автомобиля.

Решение: Отремонтировать или заменить сцепление или выключатель сцепления.

Грязный воздушный фильтр

Если не обращать внимания на этот грязный воздушный фильтр, он может задушить двигатель.

Ploychan / Getty Images

Мы упомянули дыхание двигателя, а чистый воздух важен для долгосрочной надежности двигателя. Со временем воздушный фильтр может забиваться мусором, пылью, грязью, насекомыми и пыльцой. В крайних случаях грязный воздушный фильтр может затруднить поступление воздуха во впускное отверстие и заблокировать двигатель. На холостом ходу, по крайней мере временно, вы можете испытывать тряску автомобиля на холостом ходу, а также плохое ускорение.К сожалению, продолжение работы, вероятно, приведет к разрушению воздушного фильтра, что решит проблемы холостого хода и производительности, но позволит полностью нефильтрованному воздуху попасть в двигатель, что может увеличить износ.

Решение: Заменить воздушный фильтр.

Поскольку двигатель представляет собой сложный механизм, вы можете себе представить, что это не единственные проблемы, которые могут вызвать тряску автомобиля на холостом ходу. Используя их в качестве руководства, вы действительно можете найти что-то еще, что мешает вашему двигателю работать на холостом ходу плавно.Проконсультируйтесь с надежным механиком для более тщательной диагностики и ремонта.

Как отремонтировать каталитический нейтрализатор (не заменяя его)

Каталитический нейтрализатор является частью выхлопной системы, обрабатывая все выхлопные газы, выходящие из двигателя, прежде чем они попадут в атмосферу. Плохой или забитый каталитический нейтрализатор может в конечном итоге привести к отказу двигателя, поэтому важно как можно скорее решить проблему. Однако наличие проблем с каталитическим нейтрализатором не обязательно означает, что преобразователь необходимо заменить.Вы можете отремонтировать каталитический нейтрализатор, не заменяя его, одним из следующих способов.

Как работают каталитические нейтрализаторы

Сегодняшние автомобили чище и мощнее, чем когда-либо прежде, во многом благодаря электронному контролю и устройствам контроля выбросов, включая каталитические нейтрализаторы. В вашем двигателе топливо соединяется с кислородом в воздухе, вызываемым искрой или теплотой сжатия. В идеале эта химическая реакция должна приводить только к движущей энергии, водяному пару (h3O) и двуокиси углерода (CO2).Однако в реальных условиях вождения достичь идеала сложно, что приводит к вредным выбросам.

Каталитический нейтрализатор использует драгоценные металлы и высокую температуру для окисления и уменьшения вредных выбросов, превращая их в более безопасные соединения, такие как h3O, CO2, азот (N2). Каталитические преобразователи из-за своей конструкции с использованием редких металлов, таких как платина, палладий и родий, дороги и стоят более 1000 долларов (не включая диагностику и установку).

Признаки проблемы с каталитическим нейтрализатором

  • Двигатель плохо разгоняется или с трудом заводится .Эти проблемы могут указывать на забитый каталитический нейтрализатор, ограничивающий выход выхлопных газов из двигателя. Забитый каталитический нейтрализатор по существу «задыхает» двигатель, не позволяя ему «выдыхать» выхлоп.
  • Запах серы или «тухлого яйца» указывает на образование сероводорода (H 2 S), что является вероятным признаком загрязнения каталитического нейтрализатора. Запах аммиака (NH 3 ) также может указывать на плохую работу катализатора.
  • Если корпус каталитического нейтрализатора обесцвечен или деформирован , это может быть внутренней утечкой или перегревом.
  • Дребезжание при запуске двигателя может указывать на сломанный катализатор.
  • Неудачный годовой или полугодовой тест на выбросы также может быть связан с неисправным каталитическим нейтрализатором.
  • Сигнальные лампы автомобиля. Горящая лампа проверки двигателя или индикатор неисправности (CEL или MIL) с диагностическим кодом неисправности (DTC) каталитического нейтрализатора является наиболее распространенным индикатором неисправности каталитического нейтрализатора. Если модуль управления двигателем (ECM) обнаруживает проблему с каталитическим нейтрализатором, он может записать код неисправности DTC P0420, определенный как «Эффективность системы катализатора ниже порога».”

«Итальянский тюнинг»

«Italian Tune-Up» — это обычное решение для ряда автомобильных проблем, включая засорение каталитического нейтрализатора. Многие водители просто не нажимают на свои автомобили настолько сильно, чтобы нагреть каталитический нейтрализатор до наиболее эффективной температуры — от 800 ° F (426 ° C) до 1832 ° F (1000 ° C), что приводит к преждевременному выходу из строя.

Езда на автомобиле с большей интенсивностью, чем обычно, на несколько миль (например, многократные резкие ускорения) может достаточно нагреть преобразователь и сжечь отложения, снижающие производительность, на впуске, головке блока цилиндров, выпуске, датчиках кислорода и каталитическом нейтрализаторе.

Топливо и присадки к топливу

Другое топливо или топливная «присадка» может быть эффективной для очистки от отложений каталитического нейтрализатора. Например, если вы обычно заправляете свой автомобиль самым дешевым низкооктановым топливом, попробуйте запустить свой автомобиль на нескольких баках с высокооктановым топливом.

Добавление одного галлона разбавителя лака к десяти галлонам газа при следующей заправке также может оказаться эффективным средством удаления отложений в каталитическом нейтрализаторе. Вы можете попробовать любой из этих методов в сочетании с итальянским методом настройки.

Двигатель работает справа

Вам может потребоваться исправить другие проблемы с двигателем, чтобы решить проблему с каталитическим нейтрализатором. Ленивый кислородный датчик может ошибочно указывать на проблему с каталитическим нейтрализатором, но при этом не устанавливать для себя код неисправности. Техник может определить, реагирует ли датчик должным образом.

Другие проблемы с двигателем, такие как слишком богатая или обедненная топливная смесь, сжигание масла или охлаждающей жидкости или проблемы с воспламенением двигателя, могут привести к загрязнению каталитического нейтрализатора или преждевременному выходу из строя.В зависимости от степени уже нанесенного ущерба устранение проблем с двигателем может спасти каталитический нейтрализатор от расплавления.

Устранение проблем с выхлопом

Утечки выхлопных газов являются обычным явлением и могут исказить показания датчика кислорода без установки других кодов неисправности. Тщательный поиск может выявить утечки выхлопных газов, которые при ремонте «восстанавливают» работу каталитического нейтрализатора, по крайней мере, с точки зрения контроллера ЭСУД.

Изношенные выхлопные прокладки и корродированные гибкие трубы — две распространенные проблемы, которые значительно дешевле и эффективнее, чем замена каталитического нейтрализатора.

Очистка каталитического нейтрализатора

Снятие и очистка каталитического нейтрализатора — еще одно возможное решение. После удаления каталитического нейтрализатора используйте мойку высокого давления, чтобы удалить любые загрязнения с матрицы. Обязательно промойте блок с обоих концов.

Другой способ очистить каталитический нейтрализатор — замочить его на ночь в горячей воде и обезжиривателе или моющем средстве для стирки. Этот процесс занимает больше времени, но необходим для растворения отложений, забивающих ваш каталитический нейтрализатор.После мытья или замачивания обязательно полностью просушите каталитический нейтрализатор перед повторной установкой.

Увеличьте срок службы каталитического нейтрализатора

Иногда каталитический нейтрализатор абсолютно необходимо заменить (например, если он сломан изнутри или расплавился). Если вам нужно заменить каталитический нейтрализатор, убедитесь, что он прослужит как можно дольше, следуя этим советам.

  • Машины любят водить . Не позволяйте машине простаивать неделями без управления и убедитесь, что вы совершаете несколько длительных поездок, а не только короткие.Чтобы достичь надлежащей рабочей температуры, проводите не менее 20 минут за рулем со скоростью по шоссе один раз в неделю.
  • Выполняйте регулярное плановое техническое обслуживание , такое как замена масла, замена воздушного фильтра и регулярные осмотры. Если вы или ваш техник заметили что-то, что требует ухода, немедленно устраните его, чтобы предотвратить возможное повреждение каталитического нейтрализатора.
  • Немедленно обратитесь к индикатору проверки двигателя . Если загорается индикатор, вероятно, двигатель работает в разомкнутом контуре, основанном на программировании, а не на обратной связи.В разомкнутом контуре двигатель может работать слишком богатой или слишком бедной, что может повредить каталитический нейтрализатор.
  • Рассмотрите возможность перехода на высокооктановое топливо , по крайней мере, периодически, если вы обнаружите, что переход на высокооктановое топливо решает проблему с каталитическим нейтрализатором. Первоначальное изменение очищает каталитический нейтрализатор, но постоянный переключатель может поддерживать его на протяжении всего срока службы вашего автомобиля.

Утечка вакуума в двигателе: симптомы и решения

Если у вашего автомобиля есть утечка вакуума в двигателе, соотношение воздух-топливо в вашем двигателе будет выше 14.7: 1, также называемая «обедненной» смесью. Это соотношение означает, что в вашем двигателе слишком много воздуха, и в результате двигатель будет работать плохо или совсем не работать. Если вы подозреваете, что в вашем автомобиле есть утечка вакуума, читайте дальше, чтобы узнать о наиболее распространенных симптомах, а также о том, как их исправить.

Общие симптомы утечки вакуума в двигателе

Утечки вакуума в двигателе обычно связаны со следующими симптомами, но имейте в виду, что это не исчерпывающий список.

Проблемы при работе двигателя

Двигатель с утечкой вакуума потенциально может работать нормально, но он может работать на холостом ходу быстрее, чем обычно, работать на холостом ходу грубо, пропускать зажигание, колебаться или глохнуть.Вы можете обнаружить, что ваш автомобиль не ускоряется так хорошо, как обычно. Серьезные утечки на впуске могут вообще помешать запуску двигателя.

Экономия топлива и выбросы

Бедная топливовоздушная смесь будет гореть сильнее и приведет к увеличению выбросов оксидов, таких как оксид азота (NOx) и оксид серы (SOx). Даже если индикатор проверки двигателя не горит, автомобиль все равно может не пройти проверку на выбросы. Водители также отметят снижение экономии топлива, поскольку контроллер двигателя пытается компенсировать это за счет добавления большего количества топлива.Система контроля выбросов парниковых газов (EVAP) также зависит от вакуума для работы, поэтому утечка вакуума в клапане или трубке EVAP может вызвать диагностический код неисправности выбросов (DTC).

Проверьте свет двигателя

Модуль управления двигателем (ЕСМ) постоянно контролирует окружающую среду в двигателе. Используя, среди прочего, датчик абсолютного давления в коллекторе (MAP) или датчик массового расхода воздуха (MAF), ECM модулирует импульс топливной форсунки, синхронизацию зажигания и фазу газораспределения. Если есть утечка вакуума, контроллер ЭСУД не сможет ее компенсировать.Краткосрочная или долгосрочная корректировка топлива, STFT или LTFT на диагностическом приборе может показывать что-то вроде + 10% или + 25%, поскольку ECM пытается компенсировать неизмеренный воздух. P0171 и P0174 являются распространенными кодами неисправности обедненной смеси топливной системы.

Повреждение двигателя

В худшем случае длительное вождение с утечкой вакуума и повышенными температурами, возникающими при работе на обедненной топливно-воздушной смеси, может привести к повреждению двигателя. Обедненные смеси могут взорваться, повредив поршни и подшипники. Более высокая, чем обычно, температура выхлопных газов также может привести к расплавлению каталитического нейтрализатора.

Другие проблемы

В зависимости от того, где находится утечка вакуума, это может вызвать множество других проблем. Некоторые регуляторы давления топлива имеют вакуумную модуляцию, поэтому при потере вакуума они будут перескакивать на высокое давление. Это может привести к проблемам с корректировкой топливоподачи и загоранию контрольной лампы двигателя, возможно, с кодами DTC богатой топливной системы, такими как P0172 или P0175. Некоторые старые системы рулевого управления с гидроусилителем запускают двигатель на холостом ходу с помощью клапана переключения вакуума (VSV), но утечка вакуума может заглохнуть двигатель во время парковочного маневра.Во многих транспортных средствах используется усилитель тормозов с вакуумным приводом, снижающий тормозное усилие, но утечка вакуума может затруднить остановку автомобиля.

Определение утечки вакуума в двигателе

Есть несколько методов, которые можно использовать для определения утечки вакуума. Начните со схемы вакуумного шланга, которую вы можете найти в руководстве по ремонту или иногда на наклейке под капотом. Используя один из следующих методов, обнаружение утечки вакуума может проявиться в изменении частоты вращения двигателя или плавности холостого хода.Меньшие утечки могут проявляться только как колебания показаний STFT на диагностическом приборе.

Визуальная проверка

Визуальный осмотр — хороший способ начать, особенно с вакуумными шлангами и трубками. Резиновые вакуумные шланги и пластиковые вакуумные трубки под воздействием экстремальных температур под капотом и наличия кислорода в атмосфере могут стать жесткими или хрупкими, легко трескаться или ломаться. Точно так же резиновые впускные трубы двигателя также могут стать хрупкими, потрескаться и открыть путь неизмеренному воздуху в систему.Физические манипуляции с этими компонентами при работающем двигателе могут выявить утечку.

Водный метод

Это самый простой и дешевый метод, так как для него используется простой распылитель воды. При работающем двигателе распыляйте воду вокруг предполагаемых участков утечки вакуума, таких как фитинги вакуумных шлангов, прокладки впускного коллектора и втулки дроссельной заслонки. Утечка вакуума будет засасывать воду, временно «герметизируя» утечку. Это крошечное количество воды не повредит вашему двигателю.

Очиститель карбюратора

Другой метод — использовать баллончик с очистителем карбюратора или аэрозоль для очистки воздухозаборника. Обратите внимание, что очиститель карбюратора легковоспламеняющийся, поэтому следует проявлять осторожность и держать под рукой огнетушитель. С осторожностью распыляйте очиститель, чтобы подозревать места утечки вакуума, пока двигатель работает на холостом ходу. Если утечка обнаружена, двигатель, скорее всего, сгладится, поскольку горючая смесь восполняет обедненное соотношение воздух-топливо.

Пропан

Это проверенный временем метод поиска утечек вакуума, работающий по принципу, аналогичному использованию очистителя карбюратора.Используйте небольшую незажженную пропановую горелку, например, используемую для пайки или пайки, и длинный резиновый шланг. Проденьте конец шланга вокруг участков с подозрением на утечку вакуума при работе двигателя на холостом ходу. Если утечка обнаружена, двигатель, вероятно, разгонится или сгладится, поскольку горючий газ «компенсирует» обедненную AFR. Опять же, обратите внимание, что пропан легко воспламеняется, поэтому необходимо соблюдать осторожность и держать под рукой огнетушитель.

Стетоскоп механика

Используя стетоскоп механика с удаленным датчиком и длинным шлангом, исследуйте предполагаемые места утечки при работающем двигателе.Не забудьте проверить вакуумный усилитель тормозов как в моторном отсеке, так и за педалью тормоза. Небольшие утечки трудно определить, но обученное ухо может уловить характерный шипящий или свистящий звук, издаваемый утечкой вакуума.

Тест пузырьков

Если у вас есть доступ к воздушному компрессору с хорошим регулятором, вводите во впускное отверстие не более 2 фунтов на квадратный дюйм при выключенном двигателе. (Значение ниже 2 фунтов на квадратный дюйм является критическим, поскольку вы можете повредить датчики или клапаны или создать новые утечки с более высоким давлением на квадратный дюйм.) Закройте корпус дроссельной заслонки и выхлоп, затем используйте смесь мыльной воды для опрыскивания двигателя. Утечки вакуума могут быть обнаружены по пузырькам смеси в месте утечки.

Дымовая машина

Это самый дорогой и безопасный метод, но обычно дает наилучшие результаты. Не у всех есть доступ к этим дорогостоящим инструментам, но они могут понадобиться, если утечка вакуума ускользнет от вас. При выключенном двигателе заглушите воздухозаборник и выхлоп и запустите дымовую машину, впрыскивающую дым в воздухозаборник.Безвредный дым, испаренное минеральное масло, может заполнить систему через пару минут, после чего начнется поиск путей выхода. Крошечный шлейф дыма покажет утечку вакуума, поэтому лучше проводить этот тест в месте, где нет сквозняков или ветра.

Как только вы определили источник утечки, очевидным решением будет ее устранение, но это не всегда простое решение. Вакуумные шланги можно легко заменить, так же как и уплотнительные кольца сенсора или трубки, а некоторые клапаны также легко заменить. Другие утечки вакуума могут быть более трудными и требующими много времени, например, прокладки впускного коллектора или неисправный усилитель тормозов.Как всегда, если вы чувствуете, что эта работа вам не по силам, обратитесь за профессиональной помощью к местному надежному механику. Не забудьте сбросить индикатор проверки двигателя, когда закончите ремонт.

Журнал

Gears | Датчики давления

Два месяца назад мы рассказывали о тестировании потенциометров, таких как датчики TP и APP. Оба этих датчика могут вызвать жалобы на управляемость, проблемы с переключением трансмиссии и вызвать загорание контрольной лампы неисправности.

В этом месяце мы рассмотрим датчики давления.Датчики MAP и BARO были более распространены до 1996 года, за исключением нескольких производителей. С появлением OBD-II датчики массового расхода воздуха (MAF) стали отраслевым стандартом.

Некоторые производители придерживаются системы плотности скорости (не MAF). Хонда и Крайслер — пара оригинальных производителей, которые, казалось, остались с системами измерения скорости, а не с более популярными системами управления подачей топлива с датчиком массового расхода воздуха.

Тем не менее, датчики давления возвращаются, особенно с введением GDI и распространением двигателей с турбонаддувом.Помните, что датчик MAP действительно ничем не отличается от датчика давления наддува или барометрического давления. Эта тема заслуживает некоторого обсуждения, потому что в ближайшие годы мы увидим больше датчиков давления.

Теория

Прежде чем мы продолжим диагностику датчиков давления, нам необходимо обратиться к некоторым часто неправильно понимаемым теориям. Я регулярно веду занятия по анализу данных сканирования. Один из самых первых слайдов, который я показываю, — это взорвавшийся джип (рис. 1).

Данные, необходимые для поиска диагностического направления во время урока, очевидны на слайде.Но когда я задаю вопрос: «Что вы видите в данных?» У меня всегда возникает некоторая путаница по поводу одного PID. Честно говоря, машина стоит в заливе на холостом ходу. Что ты видишь?

Обычно участники выбирают номера топливной корректировки, что определенно является проблемой. Но настоящая причина плохих номеров топливной корректировки — неисправный TPS. Ложные данные от TPS заставляют PCM переполнять двигатель.

В свою очередь, кислородные датчики сообщают об истинном богатстве, и PCM в ответ прекращает подачу топлива.Но PID данных, который всегда вызывает обсуждение, — это PID абсолютного давления во впускном коллекторе, который на холостом ходу показывает 8,9 дюймов ртутного столба.

Понимаю путаницу. Подумайте о том, что вы знаете о давлении во впускном коллекторе и обычном вакуумметре: разве вы не ожидаете, что вакуумметр будет показывать 18-22 дюйма ртутного столба на холостом ходу? Я надеюсь, что это так.

И если вы подключите к этому автомобилю вакуумметр, вы получите приемлемое значение 20 дюймов ртутного столба. Так почему же диагностический прибор показывает 8,9 дюйма ртутного столба? Для этого вам нужно понимать давление, транспортное средство и отображение инструмента.

Путаница здесь связана с тем, как вакуумметр отображает вакуум, по сравнению с тем, как производители и сканирующие приборы отображают данные о давлении. Следует помнить о двух переменных: манометрическое давление в сравнении с абсолютным давлением и отображаемые единицы измерения. Единица измерения — это проще всего, поэтому мы атакуем ее в первую очередь.

Единицы измерения

Мы все знакомы с SAE и метрическими измерениями, когда дело касается длины. Например, мили против километров. Более того, вы, вероятно, знаете, что гаечный ключ на 1/2 дюйма примерно такой же, как и на 13-миллиметровый.Эти преобразования просты.

Когда дело доходит до давления или вакуума, вы можете быть немного менее осведомлены. Вы можете легко решить эти проблемы с преобразованием, вставив числа в калькулятор или выполнив поиск в Интернете. Через некоторое время вы запомните такие числа, как 29 дюймов ртутного столба и 99 кПа, и свяжете их с атмосферным давлением.

Конечно, эти числа меняются в зависимости от вашей высоты. Кроме того, они абсолютны. Это подводит нас к следующему пункту: калибровочное против абсолютного.

Манометрическое давление vs.Абсолютное давление

В случае с Jeep PID барометрического давления показывает около 29 дюймов ртутного столба. На холостом ходу датчик МАР показывает около 9 дюймов ртутного столба.

Во-первых, диагностический прибор сообщает о атмосферном давлении, как если бы мы смотрели погоду в вечерних новостях. Я имею в виду, что метеоролог говорит нам, что барометрическое давление — это истинное измерение атмосферного давления, которое оказывает давление на наши тела. Если это так, то показание BARO, которое соответствует действительному атмосферному давлению, является правильным.

Во-вторых, если мы запустим двигатель, давление во впускном коллекторе будет ниже атмосферного давления или вакуума. Давление в нашем джипе примерно на 20 дюймов ртутного столба ниже атмосферного.

Таким образом, 29 дюймов ртутного столба (бар. Рт. Ст.) Минус 9 дюймов рт. Ст. Давление в коллекторе равняется разнице в 20 дюймов ртутного столба. Или на 20 дюймов ртутного столба ниже атмосферного давления, чего мы и ожидаем от двигателя на холостом ходу.

Этот автомобиль или диагностический прибор отображает абсолютное давление и вакуум. С некоторым преобразованием вы можете связать показания давления / вакуума с тем, что вы привыкли видеть на обычном вакуумметре.

Исследование вариаций

Если бы Jeep отображал данные сканирования методом манометрического давления, показание BARO было бы 0 дюймов ртутного столба, а давление / вакуум на холостом ходу отображалось бы как 20 дюймов ртутного столба. Именно то, что вы ожидали, если бы у вас был вакуумметр, подключенный к источнику вакуума во впускном коллекторе.

Представим на мгновение, что у этого джипа есть турбокомпрессор. В ситуации полного наддува датчик MAP может показывать 41 дюйм рт. На самом деле это означает, что 29 дюймов ртутного столба плюс 6 фунтов на квадратный дюйм наддува (или 12 дюймов ртутного столба) равняются давлению в коллекторе 41 дюйм ртутного столба.

Как я пришел к такому выводу? Один PSI равен двум дюймам ртутного столба. Это означает, что давление на 12 дюймов ртутного столба выше атмосферного равно 6 фунтов на квадратный дюйм выше атмосферного давления или 6 фунтов на квадратный дюйм наддува.

Автомобиль General Motors может отображать 99 кПа барометрического давления и 31 кПа MAP на холостом ходу. В этом случае GM отображает абсолютное давление в метрическом абсолютном формате. Важно знать разницу, чтобы избежать неточной диагностики датчика давления или неправильного считывания показаний давления, которое приведет к неправильному пути диагностики.

Самый простой способ получить представление о том, как появляются данные о конкретном автомобиле, — это посмотреть на показания MAP при включенном ключе и выключенном двигателе (KOEO), а затем запустить автомобиль, чтобы увидеть, куда движется PID данных.

Если KOEO MAP (или BARO) считывает положительное число, то диагностический прибор, скорее всего, отображает данные в абсолютном выражении. Если после запуска двигателя стабилизированное давление холостого хода меньше, значит, вы получили абсолютное значение.

Например, если показание KOEO MAP составляет 29 дюймов ртутного столба, 99 кПа или 0.99 БАР, значит, инструмент отображает абсолютное давление. Запуск двигателя при разрежении 20 дюймов ртутного столба на холостом ходу должен дать показания на холостом ходу 9 дюймов ртутного столба, 31 кПа или 0,31 бар соответственно. И наоборот, показания KOEO MAP, равные 0 дюймов ртутного столба, 0 кПа или 0 бар, будут указывать на манометрическое давление, и показания на холостом ходу будут снижаться оттуда.

Рисунок 2 может помочь связать все эти значения давления: красные метки — это значения, с которыми вы наиболее знакомы. Голубые метки — это эквиваленты, которые могут бросить вам кривые мячи.

Обратите внимание, что левый датчик помечен, как если бы это был обычный датчик, который вы подключили к источнику вакуума на впускном коллекторе, в то время как правый датчик был помечен как абсолютный.

Как только вы поймете, как отображаются данные о давлении, вы сможете избежать ошибочного диагноза. Решив эти физические вопросы, мы можем перейти к проблемам с датчиком давления.

Проблемы / диагностика датчика давления

Датчики давления могут вызвать проблемы с управляемостью или переключением передач.Они являются входными данными для ECM или TCM, которые редко вызывают проблемы, но, тем не менее, вам необходимо их соблюдать. Автомобиль с плотностью скорости будет в значительной степени полагаться на датчик MAP, в то время как автомобиль, оборудованный MAF, меньше полагается на него.

Вы можете контролировать работу датчика MAP так же, как TPS или APP, таким же образом, как описано в предыдущей статье. Но обычно проблемы с датчиком давления можно обнаружить, используя данные сканирования. Конечно, если вы сомневаетесь в данных сканирования, самое время развернуть осциллограф.

Одна из самых простых проверок — это включить ключ и выключить двигатель.Наблюдайте за всеми датчиками давления (MAP, BARO, Boost и т. Д.) И убедитесь, что они соответствуют вашему текущему фактическому барометрическому давлению. Если какой-либо из них выключен, продолжайте тестирование соответствующего датчика и связанной с ним проводки.

Еще один тест — управлять транспортным средством, отображая датчики на сканирующем приборе. Пример (рис. 3) относится к продукту Chrysler, который испытывал периодические колебания и остановку. У этого автомобиля не было кодов неисправности, но мы могли многократно дублировать жалобу клиента.

Вы можете видеть TPS зеленым, когда я немного ускоряюсь и замедляюсь. Обратите внимание на видимое падение PID RPM желтым цветом при движении автомобиля. Датчик MAP, красный, выпадает до невозможных значений. Обратите внимание на скачки оборотов, следующие за неверным сигналом датчика MAP.

Из-за пропадания сигнала мы проверили электрическое соединение на датчике MAP. Убедившись, что все соединения и проводка исправны, мы заменили датчик MAP и решили проблему с выбросом кода.

Сводка

Знание того, как автомобиль и диагностический прибор отображают данные о давлении, так же важно, как и просмотр самих данных. Непонимание отображаемых данных может легко привести к неправильному диагнозу и потребует повторного запуска процесса диагностики.

Проблемы с диагностикой двигателя или электрооборудования, которые вы хотели бы решить? Сообщите Скотту. Отправьте ему электронное письмо на [email protected], и ваш вопрос будет освещен в журнале GEARS Magazine .

ДАТЧИК АБСОЛЮТНОГО ДАВЛЕНИЯ В КОЛЛЕКТОРЕ (ДАТЧИК КАРТЫ)

Общее описание
Датчик MAP (MAP) измеряет разбавление во впускном коллекторе, а его чувствительный элемент преобразует сигнал в электрический, который может быть возвращен на бортовой контроллер. Датчик MAP используется в основном как дешевая альтернатива датчикам нагрузки двигателя. Его относительно низкая стоимость является причиной его широкого распространения, хотя его измерения не так точны, как различные типы датчиков количества воздуха.MAP может располагаться в моторном отсеке как отдельный компонент или интегрироваться в бортовой контроллер. MAP используется в системах обоих типов — MPi и SPi, но чаще встречается в SPi.

Внешний вид
На рис. 1 показан типичный датчик MAP.

Фиг.1

Типы датчиков
По принципу действия бывают:

  • С аналоговым выходом — широко используется. Его напряжение пропорционально нагрузке двигателя.
  • С цифровым выходом — используется в таких системах, как Ford EEC IV.Цифровая карта посылает сигналы прямоугольной формы с определенной частотой. При повышении нагрузки частота также увеличивается, а время между импульсами, измеряемое в миллисекундах, уменьшается. Бортовой контроллер очень быстро реагирует на цифровой сигнал, потому что нет необходимости преобразовывать его в аналоговый.

Принцип работы датчика MAP
MAP подключается к впускному коллектору через вакуумный шланг. Вакуум во впускном коллекторе приводит в действие диафрагму датчика абсолютного давления в атмосферном воздухе.Конвертер преобразует измеренное давление в электрический сигнал, который подается на бортовой контроллер. ЭБУ оценивает данные от значений датчика MAP как: «Абсолютное давление» = «Атмосферное давление» — «давление в коллекторе».
Используя метод скорости / плотности, бортовой контроллер вычисляет состав топливной смеси в зависимости от сигнала MAP и частота вращения двигателя. Этот метод основан на теории, что при каждом обороте двигатель всасывает фиксированный объем воздуха. Точность этого метода несравнима с точностью датчика количества воздуха, который после точного измерения расхода воздуха рассчитывает соотношение топливной смеси. в зависимости от массы или объема воздуха, всасываемого из двигателя.
При высоком уровне вакуума во впускном коллекторе (например, на холостом ходу) выходной сигнал MAP относительно низкий, и бортовой контроллер подает меньше топлива.
В системах с впускным коллектором «мокрого» типа (например, SPi) изменения давления в коллекторе могут привести к тому, что топливо, попадающее в вакуумный шланг, достигнет MAP. Чтобы этого не произошло, используется специальный уловитель и соответственно прослеживаемый вакуумный шланг. Если топливо достигнет датчика MAP, его диафрагма может быть повреждена.
В системах MPi коллектор «сухого» типа, и топливо не может поступать, так как оно распыляется через впускные клапаны.Таким образом, отсутствует риск проникновения топлива датчика MAP и загрязнения диафрагмы, поэтому специальный уловитель не используется.
Когда датчик MAP используется как отдельный компонент, может быть достигнуто недорогое обслуживание. Когда датчик MAP встроен во встроенный контроллер, возможная замена MAP потребует замены всего контроллера.

Порядок проверки работоспособности датчика MAP

ПРИМЕЧАНИЕ: Если датчик MAP расположен внутри бортового контроллера, проверка выходного сигнала невозможна.
1.) ДАТЧИК КАРТЫ ВО ВПУСКНОМ КОЛЛЕКТОРЕ — АНАЛОГОВЫЙ ТИП
— Первичный общий осмотр

  • Подключите вакуумметр между впускным коллектором и датчиком MAP, используя тройник.
  • Оставил двигатель на холостом ходу. Если вакуум в двигателе небольшой (менее 570 мбар700 мбар), проверьте наличие следующих неисправностей:
    • разгерметизация;
    • вакуумная трубка повреждена или треснута;
    • заблокирован вакуумный шланг;
    • механическая проблема двигателя, такая как неправильно отрегулированный ремень ГРМ, приводящий в движение распределительный вал;
    • Утечки в мембране датчика MAP (если датчик встроен во встроенный контроллер).
  • Отсоедините вакуумметр и подсоедините вместо него вакуумный насос.
  • С помощью насоса создайте вакуум около 750 мбар (75 кПа) в датчике MAP.
  • Выключить вакуумный насос. Мембрана сенсора должна поддерживать то же значение вакуума не менее 30 секунд.

— Проверка точности внешнего датчика MAP
Условия проведения проверок — двигатель не запускается и разрежение обеспечивается вакуумным насосом.

  • Подключите отрицательную клемму вольтметра постоянного тока к массе шасси.
  • Определите клеммы напряжения питания, сигнала и заземления.
  • Присоедините положительную клемму вольтметра к сигнальному проводу датчика MAP.
  • Отсоедините вакуумный шланг от датчика.
  • Подсоедините датчик MAP к вакуумному насосу.
  • Включите зажигание (но не запускайте двигатель).
  • Сравните напряжение с нормативным значением для данного типа автомобиля и двигателя.
  • Создайте вакуум со значением, указанным в таблице 1, и следите за плавностью изменения напряжения.
  • Результаты для турбомоторов (Таблица 3) отличаются от результатов для «атмосферных» двигателей (Таблица 2).

Прикладной вакуум, мБар

Напряжение, В

Значение МАР, Бар

0

4,3 — 4,9

1,0 ± 0,1

200

3.2

0,8

400

2,2

0,6

500

1,2 — 2,0

0,5

600

1,0

0.4

Таблица 1

Состояние

Напряжение, В

Значение МАР, Бар

Вакуум, бар

Полностью открытая дроссельная заслонка

4,35

1,0 ± 0,1

0

Включить зажигание

4.35

1,0 ± 0,1

0

Скорость холостого хода

1,5

0,28 — 0,55

0,72 — 0,45

Остановите двигатель

1,0

0.20 — 0,25

0,80 — 0,75

Таблица 2

Состояние

Напряжение, В

Значение МАР, Бар

Вакуум, бар

Полностью открытая дроссельная заслонка

2,2

1.0 ± 0,1

0

Включить зажигание

2,2

1,0 ± 0,1

0

Скорость холостого хода

0,2 — 0,6

0,28 — 0,55

0.72 — 0,45

Прикладываемое напряжение

Напряжение, В

0,9 Бар (проверка давления турбокомпрессора

4,75

Таблица 3

— Быстрая проверка аналогового датчика MAP с помощью осциллографа

  • Восстановите все подключения к датчику MAP, как при нормальной работе двигателя.
  • Подсоедините заземляющий щуп осциллографа к заземлению шасси.
  • Подключите активный конец щупа осциллографа к сигнальной клемме датчика MAP.
  • Запустить двигатель и оставить его работать на холостом ходу.
  • Резко нажмите на дроссельную заслонку и сразу отпустите ее. Вы должны смотреть сигнал, как на рис. 2.

Фиг.2

Если напряжение резко возрастает до максимального значения при нажатии на педаль акселератора и быстро падает до минимума при отпускании педали акселератора — датчик MAP исправен.

— Возможные сбои в аналоговом датчике:
Хаотичный выходной сигнал

  • Хаотичный выходной сигнал — это когда сигнал напряжения изменяется случайным образом, падает до нуля и исчезает. Обычно это происходит при наличии неэффективного датчика MAP. В этом случае датчик необходимо заменить.

Отсутствие напряжения сигнала

  • Проверьте, подано ли опорное напряжение (+ 5,0 В).
  • Проверить заземление на наличие проблем.
  • Если опорное напряжение и заземление в порядке, проверьте сигнальный провод между датчиком MAP и бортовым контроллером.
  • Если опорное напряжение и / или заземление неправильные, проверьте целостность проводов между датчиком и ЭБУ.
  • Если все провода датчика в порядке, проверьте все соединения на опорное напряжение и массу бортового контроллера. Если они верны, то под подозрение падает контроллер.

Напряжение питания или сигнал датчика MAP соответствует напряжению автомобильного аккумулятора.

  • Проверить на короткое замыкание положительную клемму автомобильного аккумулятора.

— Прочие проверки:

  • Проверьте, нет ли чрезмерного количества топлива в вакуумном шланге или уловителе.
  • Проверить вакуумный шланг на утечки и / или другие повреждения.
  • Проверить двигатель, систему зажигания или топливную систему на предмет механических повреждений, вызывающих низкий вакуум.

2.) ДАТЧИК КАРТЫ ВО ВПУСКНОМ КОЛЛЕКТОРЕ — ЦИФРОВОЙ ТИП
ПРИМЕЧАНИЕ. Реальный сигнал с выхода этого типа датчика MAP можно увидеть только с помощью осциллографа.

  • Определите напряжение питания, сигнальные и заземляющие клеммы.
  • Подключите заземляющий щуп осциллографа к массе шасси, а активный конец — к проводу выходного сигнала датчика.
  • Запустить двигатель. Вы должны наблюдать форму волны, подобную изображенной на рис. 3.

Фиг.3

  • Если у вас есть устройство для чтения неисправностей и вы можете считывать изменение оборотов двигателя, выполните процесс, описанный ниже.
  • Увеличить частоту вращения двигателя до 4500 — 4900 об / мин.
  • Подсоедините вакуумный насос к вакуумному шлангу датчика MAP. Вакуум должен поддерживаться на одном уровне для всех значений напряжения. Зависимость изменения давления и скорости приведена в таблице 4.

200 мбар

Скорость необходимо снизить до 525 ± 120 об / мин

400 мбар

Скорость необходимо снизить до 1008 ± 120 об / мин

600 мбар

Скорость необходимо снизить до 1460 ± 120 об / мин

800 мБар

Скорость необходимо снизить до 1880 ± 120 об / мин

Таблица 4

  • При отключении давления измеренное значение количества циклов должно быть равно исходному положению — 4500 — 4900 об / мин.
  • Заменить датчик МАР, если он работает иначе, чем описано выше.

— Возможные сбои в цифровом датчике:
Отсутствие напряжения сигнала

  • Проверьте наличие опорного напряжения + 5,0 В.
  • Проверить заземление на наличие проблем.
  • Если опорное напряжение и заземление в порядке, проверьте сигнальный провод между датчиком MAP и бортовым контроллером.
  • Если опорное напряжение и / или заземление неправильные, проверьте целостность проводов между датчиком и ЭБУ.
  • Если все провода датчика в порядке, проверьте все соединения на опорное напряжение и массу бортового контроллера. Если они верны, то под подозрение падает контроллер.

Опорное напряжение или сигнал датчика MAP равны напряжению автомобильного аккумулятора.

  • Проверить на короткое замыкание провод, подключенный к положительной клемме автомобильного аккумулятора, или провод, который включает и отключает питание.

    Leave a Reply

    Your email address will not be published.Required fields are marked *

    *