Электро турбонаддув: Электро турбина на авто. Возможно ли это? Можно ли сделать своими руками

Содержание

Фирма Garrett создала электрический турбокомпрессор — ДРАЙВ

По идеологии новая система близка к электрическим турбинам, используемым в современной Формуле-1.

Компания Garrett построила собственную систему электрического наддува E-Turbo. По схеме она отличается от подобных систем у Мерседесов и Audi, использующих компоненты от своих партнёров BorgWarner и Valeo, соответственно. У немцев электрический нагнетатель представляет собой отдельный узел (электромотор плюс воздушная крыльчатка). Он не заменяет классический турбокомпрессор (а то и не один), а только дополняет его. В системе от Garrett электромотор установлен на валу турбокомпрессора между турбинным и компрессорным колёсами.

Ключевое отличие системы Гарретта от конкурирующих: в некоторых режимах электромотор обращается в генератор и не раскручивает компрессорное колесо, а собирает энергию выхлопных газов, превращая её в электричество для подзарядки батареи (получается аналог формульного блока MGU-H).

По информации производителя, опыт с одной из моделей показал, что E-Turbo позволяет поднять мощность на 16%, а крутящий момент на 10,5%. При раскрутке с низких оборотов мотор выходил на заданную планку момента за одну секунду вместо 1,5 без системы E-Turbo, а время ускорения с 60 до 100 км/ч сократилось с 11 до 8,8 с. Ещё новый узел позволяет почти во всём диапазоне оборотов использовать стехиометрическую смесь (с полным сгоранием топлива). В целом же новация сулит повышение не только динамики разгона, но эффективности силовой установки на 2-4%. Помимо того, E-Turbo якобы хорошо подходит для ДВС в составе гибридов, работающих на обеднённых смесях и для перспективных бензиновых моторов с воспламенением от сжатия.

Компания Garrett напрямую не говорит, на каких автомобилях была испытана система, хотя несколько снимков на сайте разработки указывают на Jaguar F-Pace, а также ряд машин концерна Volkswagen.

Фирма Garrett ведёт переговоры с разными компаниями о внедрении E-Turbo на их моделях и утверждает, что уже в 2021 году первая из них выйдет в свет. Разработчики говорят, что система E-Turbo может стать важным элементом в стратегии производителей с целью обеспечить выполнение ещё более жёстких норм по выхлопам Euro 7 (их внедрение ожидается примерно в 2025 году). Добавим, что темой электрических нагнетателей занимаются многие автопроизводители, например, Alfa Romeo, Mazda, Volvo, Hyundai, KIA и Ferrari.

Автомобильная электротурбина / Хабр

Наиболее действенным способом увеличения мощности двигателя автомобиля является турбина. Однако она имеет ряд существенных недостатков таких как: наличие турбоямы, оптимальная работа в небольшом диапазоне оборотов двигателя, невысокий ресурс, сложность установки в неподготовленный для этого двигатель.

Многие из этих проблем способна решить электротурбина. С электротурбиной необходимое давление наддува можно создать в любой момент и можно сбавлять обороты не боясь, что давление понизится. В электротурбине нет горячей части разогреваемой до тысячи градусов. Это положительно сказывается на её ресурсе, цене и простоте установки.

Данная статья будет посвящена нашей разработке в этом направлении.

Разработка и конструктивные особенности

На данный момент в Китае можно купить множество электротурбин, которые ставятся прямо на вход перед воздушным фильтром. Однако они оказываются на 100% бесполезны. Для обеспечения необходимого давления и большого объема подаваемого воздуха мощность электродвигателя должна составлять около 4КВт. У китайских турбин от силы несколько сот ватт.

Для данной задачи нами специально был разработан бесколлекторный электромотор способный выдать до 5КВт мощности и который может раскрутить турбину до 50000RPM. Мотор был специально спроектирован так, чтобы на полной мощности он давал своё максимальный КПД в 93%, тогда он будет выделять 350Вт тепла, которые вполне реально отводить и в теории наш мотор может выдавать полный наддув постоянно. Подробнее с характеристиками нашего мотора можно ознакомиться по ссылке.

Для питания данного мотора нами было решено использовать два автомобильных аккумулятора. Это сильно упростит процесс эксплуатации и цену установки. Один аккумулятор используется штатный, второй подключается к нему последовательно. Для подзарядки второго аккумулятора, он переподключается к первому через высокоточные реле контакторы. Литиевые аккумуляторы стоили бы на порядок дороже, при этом для них понадобилась бы специальная зарядка и очень бережная эксплуатация с соблюдением правильного температурного режима.

Однако у данного решения есть и минус. Для питания мотора на полной мощности нужен ток в районе 250А, свинцовые аккумуляторы способны выдать такой, но не продолжительно(секунд на 10-30). Затем аккумуляторам нужно будет немного “отдохнуть”. Однако нам кажется этого вполне достаточно, редко от двигателя требуется полная мощность на более длительный срок.

В качестве самой турбины нами использовалась данная турбина (её характеристики также доступны по ссылке).

Мы удалили из неё всё лишнее и расточили под крепление мотора. Все подшипники находятся непосредственно в моторе и крыльчатка одевается на его вал, что автоматически даёт соосность вала мотора и крыльчатки. Поскольку турбина будет вращаться на очень больших оборотах мы подобрали в мотор высокоскоростные подшипники SKF итальянского производства.

Для работы бесколлекторного мотора нужен контроллер и на такой большой ток он достаточно дорогой. Однако мы специально подбирали токи и напряжения так, чтобы для этой задачи подошёл наиболее мощный из дешевых контроллер стоимостью 1500р. Данного контроллера хватает на грани на полную мощность и ему при этом требуется обеспечить очень хорошее охлаждение. Более мощные контроллеры стоят уже дороже 10000р.

Результат

Замеры нашего мотора на мощности до 1000Вт показали, что характеристики нашего мотора (потребление, обороты, Kv) достаточно близки к рассчитанным при моделировании. Большой объем статора и медной проволоки смогли обеспечить высокий КПД и низкий нагрев. При должном питании турбина с ним разгоняется до нужных оборотов. Но к сожалению мы пока не смогли провести полноценные испытания на полной мощности. При питании от двух аккумуляторов, через 2 секунды после набора полных оборотов контроллер сгорел, из-за отсутствия должного охлаждения. Мы заказали новый контроллер и планируем поместить его в ёмкость с трансформаторным маслом, что должно обеспечить его наилучшим охлаждением.

Видео тестов работы турбины с питанием 600 и 1000 ватт

Вывод

В итоге нам удалось создать рабочую электротурбину, которая обладает не высокой стоимостью и достаточно проста в установке. Далее будут проходить испытания уже на реальном автомобиле.

Примерная стоимость необходимых компонентов:

  • Мотор -17000р
  • Турбина -20000р
  • Аккумулятор -3000р
  • 4 реле -3000р
  • Дополнительная электроника, пайпы, воздуховоды -5000р

Итого стоимость комплекта турбины выйдет в районе 50000р.

P.S.

Автором данной идеи является Frimen3 ([email protected]). Он уже давно занимается проработкой этого вопроса geektimes.ru/post/252076 и он как раз и заказал у нас разработку мотора под данную задачу.

Турбина электрическая — как она устроена?

Для более эффективной работы Вашего транспортного средства, автомобильные производители часто прибегают к системам турбонаддува. Но так ли положительно новый тип турбокомпрессора скажется на работе двигателя?
Чтобы топливный расход автомобиля стал гораздо меньше, производители зачастую используют одно ключевое решение – сокращение объёма силового агрегата. Но кроме всего прочего, чтобы производительность таких двигателей оставалась на достойном уровне, обычно устанавливают турбокомпрессоры, которые управляются выхлопом и обладают задержкой, что более известна под термином «турбо лаг».

Автомобили с турбонаддувом подвергались этой проблеме много лет подряд, что сопровождалось постоянными жалобами и недовольством со стороны владельцев. Была найдена, как казалось, панацея – одновременная установка двух турбин, что минимизировало эффект турбо ямы. Но это, увы, не стало ключевым решением.

История электрической турбины

Электрическая турбина после длительного времени разработок уже готова к массовому применению. Об этом первой заявила компания Controlled Power Technologies (CPT) из Британии. Электрический турбонагнетатель, по их словам, уже готов к массовому производству. Руководство СРТ уже подписало соглашение с фирмой Switched Reluctance Drives Limited, что займётся разработкой OEM-модуля, основанного на этой технологической базе.

Switched Reluctance Drives займётся серийным производством электрических компрессоров. Британские разработчики, тем временем уже преуспели в создании реальных электрических компрессоров для двигателей внутреннего сгорания. Турбонагнетатель CPT будет устанавливаться на любые двигатели: атмосферные, турбированные дизельные или бензиновые.

Компания Controlled Power Technologies разрабатывала электрическую турбину на протяжении почти восьми лет, работа над ней началась ещё в начале 21-го века. Создатели электрической турбины заявляют, что она может работать от бортовой электросети напряжением в 12 вольт, а её использование избавит двигатель от эффекта турбоямы, а также задействует нагнетатель даже в режиме низких оборотов. Особенность данной технологии заключается в использовании регенеративной энергии. Обратное давление, что ранее сбрасывалось через обводной клапан блоу офф при сбросе акселератора, теперь направляется на вращение лопастями турбины маховика, что позволяет вырабатывать энергию и заряжать аккумулятор.

Прототип машины с электрической турбиной разработала немецкая компания AVL List. Электрический нагнетатель был адаптирован к двухлитровому бензиновому двигателю с непосредственным топливным впрыском. Такой силовой агрегат, который был установлен на Vokswagen Passat, загрязняет атмосферу очень деликатно, если так можно выразиться, всего 159 граммов на каждый километр пути, а это на целых 20 процентов меньше чем у аналогичного традиционного 2.0 TFSI с такой же мощностью, и меньше, чем у 170-сильного турбодизеля с таким же объёмом.

Разработчики утверждают, что данная технология помогает автомобильным производителям вложиться в установленные экологические нормы, которые вступили в силу уже в этом году. Компания Controlled Power Technologies создала стартер-генератор SpeedStart с ременным приводом, который используется для работы системы Start\Stop, что отключает двигатель на кратковременных остановках, что обязательно сэкономит топливный расход в условиях движения по городу в пробках.

Но наряду с исследователями из Британии, немецкие разработчики создали доступную идею, для нагнетания воздуха и причём с минимальными затратами, что стала признанной во всей Европе. Существенно эффективным способом улучшения нагнетания воздуха в двигателе является мини-турбина от компании KAMANN, которая монтируется во впускную систему. Электро турбонагнетатель от KAMANN является миниатюрной турбиной, которая выполняет роль электрической системы нагнетания воздуха, установленной в подкапотное пространство. Такой монтаж электрической турбины повышает крутящий момент мотора, в свою очередь способствуя понижению топливного расхода. Это улучшает качество выхлопных газов, уменьшая показатели углекислого газа и пролонгируя срок функционирования катализаторов, что улучшает общие скоростные характеристики автомобиля.

Принцип работы электротурбины

Принцип работы электрической турбины отличается от классического турбонагнетателя лишь за счёт конструкции оси, которая соединяет крыльчатки у классики. Когда турбокомпрессор достигает максимальных оборотов, контроллер включает электрический двигатель в генераторном режиме. За счёт этого предотвращается превышение пикового числа оборотов двигателя. В случаях слишком редкого понижения оборотов муфтовые соединения позволяют вращать крыльчатки независимо друг от друга, в свою очередь снижая нагрузку на подшипники.

Плюсы и минусы электрической турбины

Чем больше мощность, тем меньше выхлоп

Многие обычные двигатели внутреннего сгорания оснащаются турбинами для того, чтобы получить большую мощность и лучшее ускорение. Они расходуют меньше топлива и следовательно загрязняют атмосферу выхлопными газами также гораздо меньше в сравнении с аналогичными агрегатами без компрессора и нагнетателя. Всё, конечно же, это производит прекрасное впечатление в теоретическом плане, но практика показывает иные результаты. Большой крутящий момент зачастую находится лишь в узком диапазоне числа оборотов двигателя. Зачастую у некоторых турбо-дизелей можно наблюдать плохой показатель ускорения, в моменты изменения положения педали акселератора мотору нужно некоторое время для увеличения мощности для необходимого ускорения. Это явление уже упоминалось в данной статье как турбо-яма».

Экономия и быстрый отклик

Проведя анализ рынка современных автомобилей, компания KAMANN утверждает, что к 2020 году доля автомобилей, которые будут оснащаться электрическими турбинами, будет составлять 50-60% от общего количества сошедших с конвейера автомобилей. Ими также был разработан прибор, который помогает быстрее реагировать на изменение педали акселератора и в то же время оставаться экономичным. Эти требования очень сложно реализовать в двигателе с обычной системой турбонаддува. Такая турбосистема эффективна только в пределах определённого диапазона оборотов мотора.

Неоспоримое преимущество электрических турбин в эффективном нагнетании воздуха во всём диапазоне оборотов мотора автомобиля, даже в момент запуска двигателя, ведь нагнетаемый воздух уже находится во впускном коллекторе. В момент нагнетания воздуха, когда двигатель запускается, электрическая турбина мгновенно откликается на нажатие акселератора даже при маленькой скорости. Даже нагнетая воздух в момент переключения скоростей, Вы непрерывно будете получать дополнительную энергию для того чтобы двигаться и ускоряться.

Турбо нагнетатель, как дополнение турбосистемы

Эффективная работа большинства турбин начинается только свыше 3000 оборотов в минуту, а это означает, что крутящий момент ниже этой цифры уже не увеличивается, что не придаёт Вашему автомобилю динамичности, а двигателю мощности. Поэтому классические турбины отходят далеко в прошлое. Установка электрической турбины позволяет двигателю уже при 1200 оборотов в минуту сразу после нажатия педали газа, получать больше чистого воздуха, не затрачивая при этом необходимую энергию. В этот момент «номы» подскакивают на 12% в сравнении с классикой!

Увеличение мощности равно экономия

Главным преимуществом установки электрической турбины является предоставление двигателю непрерывного крутящего момента и гораздо быстрого ускорения автомобиля. Kamann Autosport сравнили автомобили с бензиновым мотором объёмом 1,4 с установленной электрической турбиной и аналогичным автомобилем но с объёмом 1,6 и без турбины. Результат был следующим: оба автомобиля выдали приблизительно одинаковую мощность и крутящий момент при том же самом топливном расходе. Следовательно эти два двигателя одинаково мощны, но первый потребляет на 10% меньше топлива! А это значит, что наряду с возросшей мощностью топливный расход совсем не увеличится!

Электрическая турбина обделена всеми недостатками обычной турбины, а размер её гораздо меньше. Кроме очевидных преимуществ, конечно, присутствуют и недостатки. Модуль электротурбины в зависимости от производителя достаточно прожорлив, что требует монтажа дополнительного оборудования.

Подписывайтесь на наши ленты в таких социальных сетях как,
Facebook,
Вконтакте,
Instagram,
Pinterest,
Yandex Zen,
Twitter и
Telegram:
все самые интересные автомобильные события собранные в одном месте.

Электрический турбонагнетатель KAMANN — альтернатива для атмосферных двигателей

Покупая автомобиль, Вы прежде всего обращаете внимание на безопасность и надежность, красоту и функциональность, а также на мощность и крутящий момент. Максимальные скоростные характеристики, полученные при использовании дополнительной аэродинамики, не могут помочь в получении качественного ускорения на многих автомобилях. Классический способ улучшить ускорение состоит в том, чтобы использовать двигатель большего объема, что в свою очередь увеличивает потребление топлива и количество отработанных газов.
После многих лет научных исследований, специалисты из Германии разработали признанную во всей Европе и доступную идею нагнетания воздуха с минимальными затратами. Новый, и существенно эффективный, способ улучшить нагнетание воздуха в двигатель, предлагает компания KAMANN с использованием мини-турбины, установленной во впускной системе. Изобретенный в Германии ЭЛЕКТРИЧЕСКИЙ ТУРБОНАГНЕТАТЕЛЬ является мини-турбиной, электрической системой нагнетания воздуха в подкапотном пространстве. Такая установка увеличивает крутящий момент двигателя, что в свою очередь, способствует уменьшению расхода топлива, улучшает качество выхлопных газов, снижая показатели CО и продлевая срок службы катализаторов, и улучшает динамические характеристики автомобиля в целом

БОЛЬШЕ МОЩНОСТИ, МЕНЬШЕ ОТРАБОТАННЫХ ГАЗОВ
Большинство обычных двигателей внутреннего сгорания, оснащенных турбинами для получения большей мощности и хорошего ускорения, потребляют меньше топлива и порождают меньшее количество выхлопных газов и СО при увеличенной производительности, по сравнению с аналогичным двигателем без нагнетателя или компрессора. Все это хорошо производит впечатление в теории, на практике же, складывается другая ситуация. Высокий крутящий момент часто имеется в распоряжении только в относительно узком диапазоне числа оборотов. В частности, у некоторых турбо-дизельных двигателей наблюдается очень плохой показатель ускорения, когда в ответ на изменение положения педали газа двигателю необходимо какое-то время, чтобы увеличить мощность и ускориться. Такое явление получило название «турбо-яма»

БЫСТРЫЙ ОТВЕТ И ЭКОНОМИЯ
Проанализировав рынок современных автомобилей, KAMANN утверждает, что к 2010-2012 году доля автомобилей, оснащенных турбо-нагнетателями, будет составлять 60-70 % от общего количества проданных авто. Тщательно рассмотрев все существующие турбо-системы, специалисты KAMANN разработали прибор, помогающий быстрее реагировать на изменение положения педали газа и в то же самое время экономичен. Эти требования пока не могут быть реализованы в двигателе, оснащенном обычной турбо-системой. Двигатели с турбо-системой от выхлопных газов эффективны только в пределах определенного диапазона оборотов двигателя. Неоспоримым преимуществом электрических турбо-систем является эффективность нагнетания воздуха во всем диапазоне оборотов двигателя, даже когда двигатель только запустился — нагнетаемый воздух уже присутствует во впускном коллекторе. Нагнетая воздух при запуске двигателя, ЭЛЕКТРИЧЕСКИЙ ТУРБО-НАГНЕТАТЕЛЬ дает мгновенный ответ на нажатие педали газа, даже на небольшой скорости. Плюс, нагнетая воздух во время переключения передач, Вы все равно непрерывно получаете дополнительную энергию для движения и ускорения.

ТУРБО-НАГНЕТАТЕЛЬ ДОПОЛНЯЕТ ТУРБО-СИСТЕМЫ
Также Электрический Турбо-Нагнетатель от KAMANN способен дополнить уже существующие системы подачи воздуха в бензиновых/дизельных турбо-двигателях, ускорение такого автомобиля только улучшится. Большинство турбин начинает эффективно работать только свыше 2000-3000 об/мин, что означает — крутящий момент ниже этого значения не увеличивается, что делает Ваш автомобиль не динамичным, а двигатель — слабым. Такая особенность работы двигателей с классической турбо-системой уходит в прошлое. С установкой ЭЛЕКТРИЧЕСКОГО ТУРБО-НАГНЕТАТЕЛЯ уже при 1200-1500 об/мин и спустя 1 секунду после нажатия на педаль акселератора, Ваш двигатель получает в распоряжение больше чистого воздуха, не затрачивая при этом ценную энергию. Крутящий момент увеличивается при этом на 10-12% по сравнению с классическим способом всасывания воздуха двигателем!

УВЕЛИЧИВАЕМ МОЩНОСТЬ — И ЭКОНОМИМ
Главное преимущество после установки ЭЛЕКТРИЧЕСКОГО ТУРБО-НАГНЕТАТЕЛЯ — получение для двигателя непрерывного крутящего момента и быстрое ускорение автомобиля. KAMANN AUTOSPORT сравнил автомобиль с бензиновым двигателем 1,4, но с установленным ЭЛЕКТРИЧЕСКИМ ТУРБО-НАГНЕТАТЕЛЕМ, и автомобиль той же марки с бензиновым двигателем 1,6 и без нагнетателя, и получил результат: у обоих автомобилей примерно одна и та же мощность и крутящий момент (динамика разгона), и это при почти неизменном потреблении топлива! Значит, двигатель 1,4 имеет ту же мощность, что и двигатель 1,6, но при этом потребляет меньше топлива. Владелец такого автомобиля экономит при движении до 10% топлива! Теперь у Вас действительно будут Мощность и Экономия топлива в одном!

Справка
Электрический турбонагнетатель КАМАНН (KAMANN) в Украине можно приобрести в компании ATLAS Tuning Technologies.

Электро турбонаддув — Страница 4 — Обмен опытом — АвтоМастера.нет

Для   спорщиков   : Везде   в  тексте   где употребляется  термин Энергия   ,прошу подставить   определение :

Эне́ргия (др.-греч. ἐνέργεια — действие, деятельность, сила, мощь) — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие.  

Газотурбинный двигатель (ГТД) — тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. ( в  данном   случае  термин  ЭНЕРГИЯ   применён  для   упрощения   текста  ,  более  развёрнутое  объяснение   есть   ниже по  тексту  )
Сжатый атмосферный воздух из компрессора поступает в камеру сгорания, куда также подаётся топливо, которое, сгорая, образует большое количество газообразных продуктов сгорания под высоким давлением.
     Затем в газовой турбине энергия давления продуктов сгорания  (  ударение  на   продукты   сгорания  , то есть  работу   производит  ВЫХЛОПНОЙ ГАЗ )     преобразуется в механическую работу за счёт вращения лопаток.

——  untercover  : Не температура, не скорость, а именно ЭНЕРГИЯ!!!!   
——  heathen     : 2. Турбину крутят не выхлопные газы, а ЭНЕРГИЯ выхлопных газов, поэтому EGT до и после турбины отличаются градусов на 500. Выхлопные газы совершая работу теряют энергию, остывают.

Принцип работы турбонаддува :
Принцип работы основан на использовании энергии ( Термин   энергия  , то есть  использование   давления   выхлопных  газов ) отработавших газов. Поток выхлопных газов попадает на крыльчатку турбины (закреплённой на валу), тем самым раскручивая её и находящиеся на одном валу с нею лопасти компрессора, нагнетающего воздух в цилиндры двигателя. (ТЕМПЕРАТУРА тут  не причем  ! )

Энергия    это   понятие  , термин .  В чистом   виде  Энергии  НЕ БЫВАЕТ
Энергия — это не что иное как характеристика одной разновидности материи, показывающая ее способность взаимодействия с другой разновидностью. Поэтому она обязательно требует некоторого носителя. ТОчно также как плотность не может существовать сама по себе без привязки к некоторому объекту!

Что такое электрический турбонаддув? Электро турбина на авто. Возможно ли это? Можно ли сделать своими руками. Только реальная правда Турбина электрическая автомобильная

На заре автомобилестроения инженеры решали вопрос увеличения мощности двигателей внутреннего сгорания, что называется, в лоб – увеличивали количество и размеры цилиндров. Однако практичность таких разработок даже во времена дешевой нефти была под большим вопросом. Нагнетатель воздуха позволил решить эту проблему своими руками.

1
Турбонагнетатели – с чем столкнулись инженеры?

Сложно это представить, но еще в 1909 году автомобиль с двигателем внутреннего сгорания установил рекорд скорости в 200 км/ч – достижение для тех времен невероятное. Еще сложнее представить объем двигателя, благодаря которому удалось разогнать авто до такой скорости – 28 литров! Даже речи быть не могло, чтобы запустить такие агрегаты в массовое производство, ведь их обслуживание своими руками было практически невозможным, ввиду огромных габаритов двигателя.

К счастью, дальнейшие разработки автомобильных инженеров велись в сторону уменьшения объема при сохранении мощностей, а также упрощения конструкции. Чтобы автомобиль стал массовым, следует дать возможность ремонтировать его своими руками – так размышляли первые автомобилестроители и были совершенно правы.

Благодаря появлению нагнетателя, удалось при сохранении всех параметров сходу увеличить мощность на целых 50 %! Сегодня опытному автомобилисту не составит труда своими руками установить одну из популярных систем турборежима.

Представить принцип работы такого устройства совершенно не сложно даже школьнику младших классов. Работу мотора обеспечивает постоянное сгорание топливно-воздушной смеси, которая поступает в цилиндры двигателя. В зависимости от возможностей двигателя и режимов его работы устанавливается оптимальное соотношение воздуха и топлива. В обычных условиях объем ТВС ограничен размерами цилиндра – внутрь камеры смесь попадает благодаря разрежению на такте впуска.

Нагнетатель воздуха позволяет подать внутрь цилиндра на впуске больше топливно-воздушной смеси. Больше ТВС – больше энергии при сгорании, больше мощность агрегата. Казалось бы, все просто, как дважды два, однако без нюансов не обошлось. Увеличение мощности двигателя таким способом повлекло целый ряд проблем. Главная из них – возрастание количества тепловой энергии при сгорании смеси, что в свою очередь влечет быстрое прогорание поршней, клапанов, поломку системы охлаждения.
И далеко не всегда последствия удается ликвидировать своими руками.

Кроме того, с увеличением объема ТВС увеличивается и шанс детонации двигателя в буквальном смысле этого слова. Даже без детонации преждевременный износ агрегата гарантирован. Чтобы уменьшить негативные последствия для автомобиля (избежать их полностью не удается), принято использовать высокооктановое топливо, а также декомпрессию. В первом случае приходится своими руками платить немалые деньги, а во втором существенно снижается мощность.

2
Нагнетатель воздуха – как влить силы в двигатель?

С развитием автомобилестроения возникали и различные способы компрессии воздуха. Многие разработки уверенно дошли и до наших дней. Итак, разберемся, какие способы наддува существуют:

  1. Механический – «отец» нагнетателей, возникший практически сразу же после появления ДВЗ. В действие такой наддув приводится коленвалом мотора.
  2. Электрический – более современный вариант турбонаддува, в котором излишнее давление в цилиндрах создает электрический компрессор.
  3. Турбонаддув – нагнетатель в такой системе работает от давления выхлопных газов и компрессора.
  4. Комбинированный наддув – совмещение различных систем, чаще всего механической и турбо.

Как правило, такие системы серийно на автомобили не устанавливаются, что дает автолюбителям множество возможностей для тюнинга своими руками.

3
Механический турбонагнетатель воздуха – своими руками совершенствуем авто!

Наиболее эффективен режим турбо на впрысковых бензиновых двигателях. Моторы карбюраторного типа также могут работать с механическим нагнетателем, однако им необходима определенная доработка своими руками, в частности, установка жиклеров с увеличенным сечением и другие меры. В случае с инжекторным двигателем все сводится к новой прошивке.

Механический нагнетатель, работающий от коленвала двигателя, имеет несомненное достоинство – он работает абсолютно синхронно с агрегатом и в режиме турбо обеспечивает равномерную подачу воздуха в соответствии с оборотами мотора. Однако такое устройство будет отбирать для своей работы часть мощности движка.

Самыми распространенными вариантами построения механических нагнетателей, которые можно установить своими руками, являются три типа:

  • Центробежный аппарат – применяется как самостоятельно в виде компрессора, так и в комбинации с другими устройствами. Принцип работы достаточно прост – лопатки, вращающиеся на большой скорости, захватывают воздух и забрасывают внутрь корпуса, который имеет улиткообразную форму. На выходе из корпуса поток воздуха приобретает нужное для режима турбо давление. Невысокая стоимость устройства и возможность установки своими руками сделали его наиболее популярным. Однако в его работе хватает и сложностей, в частности, с техобслуживанием.
  • Нагнетатель ROOTS – представляет собой лопатки ротора, которые помещены в замкнутый корпус. Воздух захватывается на входе, за счет высокой скорости вращения лопаток воздух приобретает более высокое давление на выходе. Главный недостаток устройства такого типа – неравномерность подачи воздушного потока, что вызывает пульсацию давления в режиме турбо. Однако относительно тихая работа, надежность и компактность заставляют автомобилистов мириться даже с таким недостатком. При определенных навыках обращения с техникой вам не составит труда установить такой наддув своими руками.
  • Нагнетатель LYSHOLM – представитель винтового типа аппаратов. Принцип работы схож с предыдущим – поток воздуха создается роторами, которые вращаются на высокой скорости. Главное отличие этого типа нагнетателей – маленький зазор между винтами, что вызывает множество сложностей в проектировании и установке таких изделий. Встречаются они на автомобилях нечасто и стоят недешево. Устанавливать их своими руками не рекомендуется, лучше обращаться к специалистам по турбонаддуву.

4
Турбонагнетатель – универсальный наддув своими руками

Как для бензиновых, так и для дизельных двигателей возможно применение турбонагнетателя. Это устройство представляет собой комбинацию компрессора и турбины, которая использует давление выхлопных газов для работы. Последнее устройство создает ряд проблем – турбина должна выдерживать высокие температуры и огромную скорость вращения, а значит, материалы для ее изготовления должны быть сверхпрочными. Некоторую часть нагрузки с турбины снимает компрессор, что и позволяет комплексу в целом справляться со своей задачей.

Недостаток устройства заключается в некотором запаздывании режима турбо – необходимо время, чтобы после нажатия на педаль турбина раскрутилась до нужного количества оборотов.

Впрочем, современные агрегаты решают и эту проблему, в основном благодаря наличию дополнительных нагнетателей. В отличие от турбонагнетателя, никакого запаздывания после нажатия на педаль в случае с электрическим компрессором вы не почувствуете – устройство, которое чаще всего комбинируют с центробежной турбиной, начинает работать уже на малых и средних оборотах, а турбина подключается на высоких. Электрический нагнетатель воздуха достаточно прост в реализации – никаких сложных систем и устройств для его установки не потребуется, так что усовершенствовать авто своими руками с его помощью вполне осуществимо.

Для того чтобы выжать все возможное из автомобиля, автопроизводители прибегают к турбонаддувам двигателя, но на пути новый вид турбокомпрессора, который может изменить игру.

Уменьшение размеров двигателя автомобиля является одним из ключевых решений, используемых автопроизводителями, чтобы уменьшить расход топлива транспортным средством ( от компании Audi). Тем не менее, чтобы сокращенный в размерах двигатель обладал высокой производительностью, автокомпании, как правило, используют турбонаддув, который приводится в движение с помощью выхлопных газов (подробнее о работе турбонаддува, читайте ). У классической схемы работы турбонаддува имеется одна острая проблем, она приводит к задержке ответа наддува. Это явление широко известно, как турболаг. Чтобы было понятно, объясним проще, вы следуете на обгон, жмете педаль газа в пол, включается турбонаддув, но рывок автомобиля происходит лишь через пару секунд из-за так называемого турболага.

Эта медленная реакция преследует автомобили с турбонаддувами уже многие годы и является распространенной жалобой. Такие вещи, как турбонаддув с двойной улиткой или небольшие турбины, часто используются как средство борьбы с этим отставанием, но и они не совершенны. Попытки обуздать этот недостаток при помощи, так называемой , о которой мы писали ранее, также, к сожалению ни к чему и не привели, не выдержав испытаний на практике. Проще говоря, очень сложно сделать двигатель с турбонаддувом с немедленной реакцией.

Принцип работы электрического турбонаддува

Все останется на своих местах, пока мы не начнем использовать электрические компоненты. В то время как автопроизводители со всех сторон исследовали все плюсы и минусы полностью электрических силовых установок, они пришли к выводу, что когда дело касается элеткродвигателей, то в них ответная реакция возникает моментально. Взять к примеру классический Toyota Prius, более быстрой реакции на ускорение вы не найдете ни в одном сходном по параметрам автомобиле. Конечно, электрические транспортные средства дорогие из-за размера их двигателей и батарей, и они не совсем практичны, из-за ограниченного диапазона движения. Но, невзирая на это, автопроизводители могут использовать небольшие электромоторы и компоненты в своих целях. Одним из таких случаев является питание турбокомпрессора, который ускоряет двигатель автомобиля, не полагаясь на выхлопные газы.

Электрический двигатель реагирует мгновенно, в течение 250 миллисекунд. Используя такой механизм, можно снизить расход топлива на 10 процентов. Так как подобного рода турбокомпрессор не использует выхлопные газы, то технически он является просто нагнетателем. Для того, чтобы потребителям была ясна концепция данного механизма, его часто называют электрическим турбонаддувом.

Компания Volkswagen и связанные с ней автомобильные бренды активно инвестируют в эту электрическую турбо технологию.

Компания Audi демонстрирует E-Turbo

Недавно компания Audi представила свои последние разработки в мире электрических турбонаддувов вместе с концепт-каром Clubsport TT Turbo Concept, который предоставляет владельцу 600 лошадиных сил мощности и 479 Нм крутящего момента благодаря оборудованному турбонаддувами 2,5-литровому пятицилиндровому двигателю. Один турбонаддув является традиционным и приводится в движение выхлопными газами, второй турбонаддув работает с электрическим блоком.

Компания создала концепт для демонстрации потенциала электрических турбокомпрессоров, сказав тем самым, что технология готова к использованию в серийных автомобилях. 48-вольтная электрическая подсистема, которая питает электротурбонаддув, расположена в багажнике автомобиля и по первой необходимости дает двигателю ускорение, не заставляет его ждать, как традиционный турбонаддув.

«Турбокомпрессор с электрическим приводом обеспечивает значительные преимущества», сказал представитель компании Audi. «Он быстро и равномерно увеличивает скорость двигателя до максимального количества оборотов, без каких-либо существенных задержек».

Такой принцип работы позволяет проектировать обычный турбонаддув конкретно для двигателей высоких мощностей — e-turbo обеспечивает мгновенный отклик и мощный спринт на низких оборотах двигателя.

Это не первый раз, когда компания Audi показала свою заинтересованность в электрическом турбонаддуве. В прошлом году немецкий автопроизводитель добавил электротурбонаддув в 3,0-литровый дизельный двигатель V-6 твин-турбо и засунул всю эту смесь в RS5. Результатом стал вызывающе быстрый автомобиль в кузове купе, который набирает скорость от 0 до 100 км/ч всего за 4 секунды. Это делает его быстрее, чем обычный RS5 и в два раза сокращает расход топлива.

Когда нам ожидать электрические турбонаддувы в серийных автомобилях?

При всех положительных отзывах, которые получает данная технология, компания Audi, по всей видимости, будет в числе первых автопроизводителей, которые используют электротурбонаддув в серийных автомобилях, но до сих пор компания не распространяется о том, когда мы сможем увидеть такие автомобили у официальных дилеров.

Для более эффективной работы Вашего транспортного средства, автомобильные производители часто прибегают к системам турбонаддува. Но так ли положительно новый тип турбокомпрессора скажется на работе двигателя?
Чтобы топливный расход автомобиля стал гораздо меньше, производители зачастую используют одно ключевое решение – сокращение объёма силового агрегата. Но кроме всего прочего, чтобы производительность таких двигателей оставалась на достойном уровне, обычно устанавливают турбокомпрессоры, которые управляются выхлопом и обладают задержкой, что более известна под термином «турбо лаг».

Автомобили с подвергались этой проблеме много лет подряд, что сопровождалось постоянными жалобами и недовольством со стороны владельцев. Была найдена, как казалось, панацея – одновременная установка двух турбин, что минимизировало эффект турбо ямы. Но это, увы, не стало ключевым решением.

История электрической турбины

Электрическая турбина после длительного времени разработок уже готова к массовому применению. Об этом первой заявила компания Controlled Power Technologies (CPT)
из Британии. Электрический турбонагнетатель, по их словам, уже готов к массовому производству. Руководство СРТ уже подписало соглашение с фирмой Switched Reluctance Drives Limited, что займётся разработкой OEM-модуля, основанного на этой технологической базе.

Switched Reluctance Drives займётся серийным производством электрических компрессоров. Британские разработчики, тем временем уже преуспели в создании реальных электрических компрессоров для двигателей внутреннего сгорания. Турбонагнетатель CPT будет устанавливаться на любые двигатели: атмосферные, турбированные дизельные или бензиновые.

Компания Controlled Power Technologies разрабатывала электрическую турбину на протяжении почти восьми лет, работа над ней началась ещё в начале 21-го века. Создатели электрической турбины заявляют, что она может работать от бортовой электросети напряжением в 12 вольт, а её использование избавит двигатель от эффекта турбоямы, а также задействует нагнетатель даже в режиме низких оборотов. Особенность данной технологии заключается в использовании регенеративной энергии. Обратное давление, что ранее сбрасывалось через обводной клапан блоу офф при сбросе акселератора, теперь направляется на вращение лопастями турбины маховика, что позволяет вырабатывать энергию и заряжать аккумулятор.

Прототип машины с электрической турбиной разработала немецкая компания AVL List.

Электрический нагнетатель был адаптирован к двухлитровому бензиновому двигателю с непосредственным топливным впрыском. Такой силовой агрегат, который был установлен на Vokswagen Passat, загрязняет атмосферу очень деликатно, если так можно выразиться, всего 159 граммов на каждый километр пути, а это на целых 20 процентов меньше чем у аналогичного традиционного 2.0 TFSI с такой же мощностью, и меньше, чем у 170-сильного турбодизеля с таким же объёмом.

Разработчики утверждают, что данная технология помогает автомобильным производителям вложиться в установленные экологические нормы, которые вступили в силу уже в этом году. Компания Controlled Power Technologies создала стартер-генератор SpeedStart
с ременным приводом, который используется для работы системы Start\Stop, что отключает двигатель на кратковременных остановках, что обязательно сэкономит в условиях движения по городу в пробках.

Но наряду с исследователями из Британии, немецкие разработчики создали доступную идею, для нагнетания воздуха и причём с минимальными затратами, что стала признанной во всей Европе. Существенно эффективным способом улучшения нагнетания воздуха в двигателе является мини-турбина от компании KAMANN, которая монтируется во впускную систему.
Электро турбонагнетатель от KAMANN является миниатюрной турбиной, которая выполняет роль электрической системы нагнетания воздуха, установленной в подкапотное пространство. Такой монтаж электрической турбины повышает крутящий момент мотора, в свою очередь способствуя понижению топливного расхода. Это улучшает качество выхлопных газов, уменьшая показатели углекислого газа и пролонгируя срок функционирования катализаторов, что улучшает общие скоростные характеристики автомобиля.

Принцип работы электротурбины

Принцип работы электрической турбины отличается от классического турбонагнетателя лишь за счёт конструкции оси, которая соединяет крыльчатки у классики. Когда турбокомпрессор достигает максимальных оборотов, контроллер включает электрический двигатель в генераторном режиме. За счёт этого предотвращается превышение пикового числа оборотов двигателя. В случаях слишком редкого понижения оборотов муфтовые соединения позволяют вращать крыльчатки независимо друг от друга, в свою очередь снижая нагрузку на подшипники.

Плюсы и минусы электрической турбины

Чем больше мощность, тем меньше выхлоп

Многие обычные двигатели внутреннего сгорания оснащаются турбинами для того, чтобы получить большую мощность и лучшее ускорение.
Они расходуют меньше топлива и следовательно загрязняют атмосферу выхлопными газами также гораздо меньше в сравнении с аналогичными агрегатами без компрессора и нагнетателя. Всё, конечно же, это производит прекрасное впечатление в теоретическом плане, но практика показывает иные результаты. Большой крутящий момент зачастую находится лишь в узком диапазоне числа оборотов двигателя. Зачастую у некоторых турбо-дизелей можно наблюдать плохой показатель ускорения, в моменты изменения положения педали акселератора мотору нужно некоторое время для увеличения мощности для необходимого ускорения. Это явление уже упоминалось в данной статье как турбо-яма».

Экономия и быстрый отклик

Проведя анализ рынка современных автомобилей, компания KAMANN утверждает, что к 2020 году доля автомобилей, которые будут оснащаться электрическими турбинами, будет составлять 50-60%
от общего количества сошедших с конвейера автомобилей. Ими также был разработан прибор, который помогает быстрее реагировать на изменение педали акселератора и в то же время оставаться экономичным. Эти требования очень сложно реализовать в двигателе с обычной системой турбонаддува. Такая турбосистема эффективна только в пределах определённого диапазона оборотов мотора.

Неоспоримое преимущество электрических турбин в эффективном нагнетании воздуха во всём диапазоне оборотов мотора автомобиля, даже в момент запуска двигателя, ведь нагнетаемый воздух уже находится во впускном коллекторе. В момент нагнетания воздуха, когда двигатель запускается, электрическая турбина мгновенно откликается на нажатие акселератора даже при маленькой скорости. Даже нагнетая воздух в момент переключения скоростей, Вы непрерывно будете получать дополнительную энергию для того чтобы двигаться и ускоряться.

Турбо нагнетатель, как дополнение турбосистемы

Эффективная работа большинства турбин начинается только свыше 3000 оборотов в минуту
, а это означает, что крутящий момент ниже этой цифры уже не увеличивается, что не придаёт Вашему автомобилю динамичности, а двигателю мощности. Поэтому классические турбины отходят далеко в прошлое. Установка электрической турбины позволяет двигателю уже при 1200 оборотов в минуту сразу после нажатия педали газа, получать больше чистого воздуха, не затрачивая при этом необходимую энергию. В этот момент «номы» подскакивают на 12% в сравнении с классикой!

Увеличение мощности равно экономия

Главным преимуществом установки электрической турбины является предоставление двигателю непрерывного и гораздо быстрого ускорения автомобиля. Kamann Autosport сравнили автомобили с бензиновым мотором объёмом 1,4 с установленной электрической турбиной и аналогичным автомобилем но с объёмом 1,6 и без турбины. Результат был следующим: оба автомобиля выдали приблизительно одинаковую мощность и крутящий момент при том же самом топливном расходе. Следовательно эти два двигателя одинаково мощны, но первый потребляет на 10% меньше топлива! А это значит, что наряду с возросшей мощностью топливный расход совсем не увеличится!

Электрическая турбина обделена всеми недостатками обычной турбины, а размер её гораздо меньше.
Кроме очевидных преимуществ, конечно, присутствуют и недостатки. Модуль электротурбины в зависимости от производителя достаточно прожорлив, что требует монтажа дополнительного оборудования.

Чем хорош электрический турбонаддув

Что за понятие электрический турбонаддув, которое все чаще встречается в последних новинках автопрома? Давайте разберемся. Стремясь сделать автомобили как можно более экономичными, автопроизводители все чаще уменьшают размеры двигателей, оснащая их технологией турбонаддува. Ведь для того, чтобы компактный двигатель оставался мощным, необходимо “помогать” ему, подавая воздух в цилиндры принудительно, под давлением.

“Сокращение размеров двигателя – это один из основных способов уменьшить расход топлива автомобиля,” – говорит представитель французской компании Valeo, занимающейся поставкой автомобильных комплектующих. “Чтобы малолитражный двигатель мог развить большую мощность, производители обычно используют турбины, работающие от выхлопных газов. Однако, к сожалению, для турбированных двигателей характерна слабая отзывчивость на низких оборотах, называемая “эффектом турбоямы” или “турболагом”.

Этот “провал” при наборе оборотов, вызываемый инерцией турбины, стал “ахиллесовой пятой” турбомоторов. Отчасти проблему удалось решить применением твинскрольной турбины с изменяемой геометрией, или же использованием второй малой турбины в помощь первой. В обоих случаях турбины работают в более широком диапазоне оборотов двигателя, однако полностью ликвидировать “турболаг” все же не удалось. Увы, турбированным агрегатам весьма сложно обеспечить мгновенную реакцию на нажатие педали газа, естественную для атмосферных двигателей.

И вот теперь на помощь пришел новый вид турбонаддува – электрический. Что это за “зверь” и сможет ли электрический турбонаддув “изменить правила игры ”?

Изучая принципы работы электромобилей, автопроизводители обнаружили, что для электромоторов характерна мгновенная отзывчивость. Сегодня всем пересесть на электротранспорт пока нереально. Моторы и аккумуляторы электромобилей из-за своих крупных размеров обходятся недешево, да и ограниченный пробег электрокаров на одном заряде батарей устроит ни каждого.

Но почему бы не использовать небольшой электромотор для питания компрессора турбированного двигателя? Ведь тогда можно будет нагнетать воздух в двигатель без помощи отработавших газов! Именно в этом и состоит принцип работы электрического нагнетателя.

Идея использовать электрический турбонаддув
не нова – о разработках в этой области уже несколько лет назад сообщали такие компании, как Mercedes-Benz, BMW и Ferrari. Но, пожалуй, больше других электрическим нагнетателем заинтересовался концерн Volkswagen – в настоящее время VW Group инвестирует огромные средства в развитие техологии электротурбонаддува или электрический турбонаддув
.

Марк Жиль, занимающийся развитием технологических коммуникаций в североамериканском подразделении Volkswagen, называет главным преимуществом электрического турбонаддува “ то, что он обеспечивает ускорение на низких оборотах, в то время как обычные турбины, работающие от выхлопных газов, создают нужное давление воздуха минимум при 1500 оборотах двигателя в минуту.”

“Электромотор способен реагировать на нажатие педали газа мгновенно (в течение 250 миллисекунд),” – говорят в Valeo, добавляя, что, используя электрический турбонаддув, “можно сократить потребление топлива на 7-20 процентов”.

Компания Audi, входящая в концерн Volkswagen Group, недавно продемонстрировала свои последние достижения в области электротурбонаддува на примере концепта Clubsport TT Turbo. Полноприводный автомобиль развивает мощность в 600 л.с. и крутящий момент в 649 Нм благодаря тому, что его 2,5-литровый пятицилиндровый двигатель оснастили двумя турбинами – традиционной и электрической.

Электрокомпрессор питается от 48-вольтовой подсистемы, установленной в багажнике и, в отличие от обычной турбины, обеспечивает крутящий момент “по первому требованию”. В итоге Clubsport TT Turbo разгоняется до 100 км/ч всего за 3,6 секунды.

“Компрессор, питающийся от электричества, имеет существенные преимущества,” – говорит Брэд Стерц, занимающийся силовыми установками в североамериканском подразделении Audi. “Он раскручивается до максимума быстро, без какой-либо ощутимой задержки и продолжает создавать давление воздуха, когда традиционной турбине не хватает энергии выхлопных газов.”

“Такой принцип работы позволяет создавать традиционные турбонагнетатели, специально “заточенные” на подачу более высокого давления и, соответственно, обеспечивающие большую мощность двигателя, в то время как электрический компрессор будет отвечать за моментальный отклик и мощные рывки с низких оборотов в любой момент времени,” – добавляет Стерц.

Кстати, концепт Clubsport TT Turbo – это не первая попытка Audi поэкспериментировать с электронагнетателем. В прошлом году немецкий производитель снабдил электрокомпрессором 3,0-литровый дизельный двигатель, добавив его к традиционной турбине. Данная конструкция была установлена на спортивное купе RS5. На выходе получился автомобиль, способный “разменять первую сотню” за 4 секунды, расходуя при этом всего 5 литров топлива на 100 км пути. То есть, RS5 с электронаддувом оказался и быстрее, и в два раза экономичнее своего “обычного” собрата.

Так когда же электрический турбонаддув следует ожидать в широких массах? Уже в следующем году! Как сообщил производитель электронагнетателя Valeo, первым серийным автомобилем, на котором будет реализована новая технология, станет спортивный вседорожник Audi SQ7, где электрический турбонаддув получит дизельный двигатель V8, имеющий объем около 4 литров. Мощность данного силового агрегата, предположительно, составит более 400 л.с., а разгон с места до 100 км/ч – 5,5 секунд. SQ7 поступит в продажу в 2016 году.

Интерес к электрическому турбонаддуву также проявили такие компании, как Volvo, Hyundai, Kia и американский производитель Honeywell.

Так что, возможно, вскоре электрический турбонаддув станет нормой жизни, а владельцы турбированных автомобилей забудут о “турболаге”, наслаждаясь отличной тягой практически с холостых оборотов и скромными цифрами расхода топлива.

Электро турбина на ваз


Электротурбина! — DRIVE2

ОБЫЧНЫЕ ТУРБО-СИСТЕМЫ ПОЛУЧИЛИ АЛЬТЕРНАТИВУ

Покупая автомобиль, Вы прежде всего обращаете внимание на безопасность и надежность, красоту и функциональность, а также на мощность и крутящий момент. Максимальные скоростные характеристики, полученные при использовании дополнительной аэродинамики, не могут помочь в получении качественного ускорения на многих автомобилях. Классический способ улучшить скорость и ускорение состоит в том, чтобы использовать двигатель большего объема, что в свою очередь увеличивает потребление топлива и количество отработанных газов

После многих лет научных исследований, специалисты из Германии разработали признанную во всей Европе и доступную идею нагнетания воздуха с минимальными затратами. Новый, и существенно лучший способ улучшить нагнетание воздуха в двигатель, предлагает компания KAMANN&AUTOSPORT с использованием их мини-турбины, установленной в воздухозаборнике. Изобретенный в Германии ЭЛЕКТРИЧЕСКИЙ ТУРБО-НАГНЕТАТЕЛЬ является мини-турбиной, электрической системой нагнетания воздуха в подкапотном пространстве. Такая система значительно улучшает эффективность при движении автомобиля, которая в свою очередь, способствует уменьшению расхода топлива, улучшает качество выхлопных газов, снижая показатели CО и значительно продлевая срок службы катализаторов, и увеличивает крутящий момент двигателя

БОЛЬШЕ МОЩНОСТИ, МЕНЬШЕ ОТРАБОТАННЫХ ГАЗОВ

Большинство обычных двигателей внутреннего сгорания, оснащенных турбинами для получения большей мощности и хорошего ускорения, потребляют меньше топлива и порождают меньшее количество выхлопных газов и СО при увеличенной производительности по сравнению с аналогичным двигателем без нагнетателя или компрессора. Все это хорошо производит впечатление в теории, на практике же, складывается другая ситуация. Высокий крутящий момент часто имеется в распоряжении только в относительно узком диапазоне числа оборотов. В частности, у некоторых турбо-дизельных двигателей наблюдается очень плохой показатель ускорения, когда в ответ на изменение положения педали газа двигателю необходимо какое-то время, чтобы поднять мощность и ускориться. Такое явление получило название «турбо-яма»

БЫСТРЫЙ ОТВЕТ И ЭКОНОМИЯ

Проанализировав рынок современных автомобилей, KAMANN утверждает, что к 2010 году доля автомобилей, оснащенных турбо-нагнетателями, будет составлять 60-70 % от общего количества проданных авто. Тщательно рассмотрев все существующие турбо-системы, специалисты KAMANN взялись разработать систему, которая быстро реагирует на изменение положения педали газа и в то же самое время экономична. Эти требования пока не могут быть реализованы в двигателе, оснащенном обычной турбо-системой. Двигатели с механической турбо-системой от выхлопных газов эффективны только в пределах определенного диапазона оборотов двигателя. Неоспоримым преимуществом электрических турбо-систем является эффективность нагнетания воздуха во всем диапазоне оборотов двигателя, даже когда двигатель только запустился — нагнетаемый воздух уже присутствует во впускном коллекторе. Нагнетая воздух при запуске двигателя, ЭЛЕКТРИЧЕСКИЙ ТУРБО-НАГНЕТАТЕЛЬ дает мнгновенный ответ на нажатие педали газа, даже на небольшой скорости. Плюс, нагнетая воздух во время переключения передач, когда обороты сбрасываются и выжимается сцепление, Вы все равно непрерывно получаете дополнительную энергию для движения и ускорения. Благодаря этому Вы получайте Энергию и Экономию топлива!

ТУРБО-НАГНЕТАТЕЛЬ ДОПОЛНЯЕТ ТУРБО-СИСТЕМЫ

Так как Электрический Турбо-Нагнетатель от KAMANN способен дополнить уже существующие системы подачи воздуха в бензиновых/дизельных турбо-двигателях, скорость и ускорение такого автомобиля только возрастет. Большинство турбин начинает эффективно работать только свыше 2000-2500 об/мин, что означает — мощность двигателя (крутящий момент) ниже этого значения не увеличивается, что делает Ваш автомобиль не динамичным, а двигатель — слабым. Такая особенность работы двигателей с классической турбо-системой уходит в прошлое. С установкой ЭЛЕКТРИЧЕСКОГО ТУРБО-НАГНЕТАТЕЛЯ уже при 1000-1200 об/мин и спустя 1 секунду после нажатия на педаль акселератора, Ваш двигатель получает в распоряжение больше чистого воздуха, не затрачивая при этом ценную энергию. Крутящий момент увеличивается при этом на 10-12% по сравнению с классическим способом всасывания воздуха двигателем!

УВЕЛИЧИВАЕМ МОЩНОСТЬ — И ЭКОНОМИМ

Главное преимущество после установки ЭЛЕКТРИЧЕСКОГО ТУРБО-НАГНЕТАТЕЛЯ — получение для двигателя непрерывного крутящего момента и быстрое ускорение автомобиля. KAMANN AUTOSPORT сравнил автомобиль с бензиновым двигателем 1,4, но с установленным ЭЛЕКТРИЧЕСКИМ ТУРБО-НАГНЕТАТЕЛЕМ, и автомобиль той же марки с бензиновым двигателем 1,6 и без нагнетателя, и получил результат: у обоих автомобилей примерно одна и та же мощность и крутящий момент (динамика разгона), и это при почти неизменном потреблении топлива! Значит, двигатель 1,4 имеет ту же мощность, что и двигатель 1,6, но при этом потребляет столько же топлива. Владелец такого автомобиля экономит при движении до 10% топлива! Теперь у Вас действительно будут Мощность и Экономия топлива в одном!

ПРЕИМУЩЕСТВА:

Увеличение крутящего момента и лучшее ускорение автомобиля в целом

Нагнетание воздуха — 5000 литров в минуту (для нагнетателя типа NORMAL) и 15000 литров в минуту (для нагнетателя типа SUPER

Комплект годен к установке на практически все автомобили с объемом двигателя до 7,5 литров

При одновременном использовании качественного фильтра нулевого сопротивления и сертифицированного ЧИП-ТЮНИНГА от ATLAS-TUNING — эффект превосходит все ожидания!

Установка возможна как до, так и после оригинального воздушного фильтра, а также после фильтра нулевого сопротивления (рекомендуемое условие — установка до датчика расхода воздуха и до патрубка выхода картерных газов)

Для установки на двигатели с заводской турбо-системой и VW VR6-двигатели действуют отдельные условия

Корпус, стойкий к воздействию воды и коррозии

Больше воздуха во всем диапазоне оборотов работы двигателя (избирательно для разных объемов двигателей)

Легкая и быстрая установка на любой автомобиль (приблизительно 30-90 минут в зависимости от сложности конструкции)

Эффективное сгорание топлива

Понижает потребление топлива до 10 % (только при сохранении стиля езды)

Отсутствие избыточного давления даже при использовании PTU (устройства повышения бортового напряжения автомобиля до 18,5 В)

Не ограничивает поток воздуха в двигатель, даже когда не работает, благодаря специально сконструированной конфигурации крыльчаток

Имеет собственный защитный предохранитель

Запатентованная Технология, способная реконструировать автомобильную промышленность, предлагая увеличение мощности любому двигателю; в то же самое время фактически экономя топливо

Изготовленный в Германии в соответствии с Высокими Стандартами TUV

ЭЛЕКТРО ТУРБОНАГНЕТАТЕЛЬ от KAMANN — это самый эффективный и самый малозатратный тюнинг-прибор

Турбина для ВСЕХ типов транспортных средств

Крайне выгодная цена

ВЕРНУТЬСЯ НА ГЛАВНУЮ СТРАНИЦУ

Открыть больше изображений

{ 54 Комментариев }

2. ТУРБОНАГНЕТАТЕЛЬ KAMANN (super power booster)ATLAS TUNING 29.06.2008 в 22:22

Всем интересующимся сообщаем, что в постоянном наличии появился нагнетатель класса SUPER, отличительными чертами которого являются:

1. объем нагнетаемого воздуха 15 000 литров в минуту (без возможности использования блока увеличения напряжения PTU)

2. давление наддува до 0,1 бара

3. размеры и подключение аналогично NORMAL POWER BOOSTER (электрический турбонагнетатель класса N)

4. полное описание и преимущества аналогичны NORMAL POWER BOOSTER и ознакомиться с подробной информацией можно здесь

5. возможность установки — ТОЛЬКО на двигатели объемом более 1,8 бензин и 1,6 дизель; при этом установка нагнетателя на двигателях объемом свыше 2,0-2,2 литра возможна за датчиком расхода воздуха

6. увеличение воздушного потока и давления достигнуто благодаря использованию нового мощного электродвигателя с измененной конфигурацией крыльчатки

7. Запатентованное немецкое качество и сертификация TUV

Page 2

ОБЫЧНЫЕ ТУРБО-СИСТЕМЫ ПОЛУЧИЛИ АЛЬТЕРНАТИВУ

Покупая автомобиль, Вы прежде всего обращаете внимание на безопасность и надежность, красоту и функциональность, а также на мощность и крутящий момент. Максимальные скоростные характеристики, полученные при использовании дополнительной аэродинамики, не могут помочь в получении качественного ускорения на многих автомобилях. Классический способ улучшить скорость и ускорение состоит в том, чтобы использовать двигатель большего объема, что в свою очередь увеличивает потребление топлива и количество отработанных газов

После многих лет научных исследований, специалисты из Германии разработали признанную во всей Европе и доступную идею нагнетания воздуха с минимальными затратами. Новый, и существенно лучший способ улучшить нагнетание воздуха в двигатель, предлагает компания KAMANN&AUTOSPORT с использованием их мини-турбины, установленной в воздухозаборнике. Изобретенный в Германии ЭЛЕКТРИЧЕСКИЙ ТУРБО-НАГНЕТАТЕЛЬ является мини-турбиной, электрической системой нагнетания воздуха в подкапотном пространстве. Такая система значительно улучшает эффективность при движении автомобиля, которая в свою очередь, способствует уменьшению расхода топлива, улучшает качество выхлопных газов, снижая показатели CО и значительно продлевая срок службы катализаторов, и увеличивает крутящий момент двигателя

БОЛЬШЕ МОЩНОСТИ, МЕНЬШЕ ОТРАБОТАННЫХ ГАЗОВ

Большинство обычных двигателей внутреннего сгорания, оснащенных турбинами для получения большей мощности и хорошего ускорения, потребляют меньше топлива и порождают меньшее количество выхлопных газов и СО при увеличенной производительности по сравнению с аналогичным двигателем без нагнетателя или компрессора. Все это хорошо производит впечатление в теории, на практике же, складывается другая ситуация. Высокий крутящий момент часто имеется в распоряжении только в относительно узком диапазоне числа оборотов. В частности, у некоторых турбо-дизельных двигателей наблюдается очень плохой показатель ускорения, когда в ответ на изменение положения педали газа двигателю необходимо какое-то время, чтобы поднять мощность и ускориться. Такое явление получило название «турбо-яма»

БЫСТРЫЙ ОТВЕТ И ЭКОНОМИЯ

Проанализировав рынок современных автомобилей, KAMANN утверждает, что к 2010 году доля автомобилей, оснащенных турбо-нагнетателями, будет составлять 60-70 % от общего количества проданных авто. Тщательно рассмотрев все существующие турбо-системы, специалисты KAMANN взялись разработать систему, которая быстро реагирует на изменение положения педали газа и в то же самое время экономична. Эти требования пока не могут быть реализованы в двигателе, оснащенном обычной турбо-системой. Двигатели с механической турбо-системой от выхлопных газов эффективны только в пределах определенного диапазона оборотов двигателя. Неоспоримым преимуществом электрических турбо-систем является эффективность нагнетания воздуха во всем диапазоне оборотов двигателя, даже когда двигатель только запустился — нагнетаемый воздух уже присутствует во впускном коллекторе. Нагнетая воздух при запуске двигателя, ЭЛЕКТРИЧЕСКИЙ ТУРБО-НАГНЕТАТЕЛЬ дает мнгновенный ответ на нажатие педали газа, даже на небольшой скорости. Плюс, нагнетая воздух во время переключения передач, когда обороты сбрасываются и выжимается сцепление, Вы все равно непрерывно получаете дополнительную энергию для движения и ускорения. Благодаря этому Вы получайте Энергию и Экономию топлива!

ТУРБО-НАГНЕТАТЕЛЬ ДОПОЛНЯЕТ ТУРБО-СИСТЕМЫ

Так как Электрический Турбо-Нагнетатель от KAMANN способен дополнить уже существующие системы подачи воздуха в бензиновых/дизельных турбо-двигателях, скорость и ускорение такого автомобиля только возрастет. Большинство турбин начинает эффективно работать только свыше 2000-2500 об/мин, что означает — мощность двигателя (крутящий момент) ниже этого значения не увеличивается, что делает Ваш автомобиль не динамичным, а двигатель — слабым. Такая особенность работы двигателей с классической турбо-системой уходит в прошлое. С установкой ЭЛЕКТРИЧЕСКОГО ТУРБО-НАГНЕТАТЕЛЯ уже при 1000-1200 об/мин и спустя 1 секунду после нажатия на педаль акселератора, Ваш двигатель получает в распоряжение больше чистого воздуха, не затрачивая при этом ценную энергию. Крутящий момент увеличивается при этом на 10-12% по сравнению с классическим способом всасывания воздуха двигателем!

УВЕЛИЧИВАЕМ МОЩНОСТЬ — И ЭКОНОМИМ

Главное преимущество после установки ЭЛЕКТРИЧЕСКОГО ТУРБО-НАГНЕТАТЕЛЯ — получение для двигателя непрерывного крутящего момента и быстрое ускорение автомобиля. KAMANN AUTOSPORT сравнил автомобиль с бензиновым двигателем 1,4, но с установленным ЭЛЕКТРИЧЕСКИМ ТУРБО-НАГНЕТАТЕЛЕМ, и автомобиль той же марки с бензиновым двигателем 1,6 и без нагнетателя, и получил результат: у обоих автомобилей примерно одна и та же мощность и крутящий момент (динамика разгона), и это при почти неизменном потреблении топлива! Значит, двигатель 1,4 имеет ту же мощность, что и двигатель 1,6, но при этом потребляет столько же топлива. Владелец такого автомобиля экономит при движении до 10% топлива! Теперь у Вас действительно будут Мощность и Экономия топлива в одном!

ПРЕИМУЩЕСТВА:

Увеличение крутящего момента и лучшее ускорение автомобиля в целом

Нагнетание воздуха — 5000 литров в минуту (для нагнетателя типа NORMAL) и 15000 литров в минуту (для нагнетателя типа SUPER

Комплект годен к установке на практически все автомобили с объемом двигателя до 7,5 литров

При одновременном использовании качественного фильтра нулевого сопротивления и сертифицированного ЧИП-ТЮНИНГА от ATLAS-TUNING — эффект превосходит все ожидания!

Установка возможна как до, так и после оригинального воздушного фильтра, а также после фильтра нулевого сопротивления (рекомендуемое условие — установка до датчика расхода воздуха и до патрубка выхода картерных газов)

Для установки на двигатели с заводской турбо-системой и VW VR6-двигатели действуют отдельные условия

Корпус, стойкий к воздействию воды и коррозии

Больше воздуха во всем диапазоне оборотов работы двигателя (избирательно для разных объемов двигателей)

Легкая и быстрая установка на любой автомобиль (приблизительно 30-90 минут в зависимости от сложности конструкции)

Эффективное сгорание топлива

Понижает потребление топлива до 10 % (только при сохранении стиля езды)

Отсутствие избыточного давления даже при использовании PTU (устройства повышения бортового напряжения автомобиля до 18,5 В)

Не ограничивает поток воздуха в двигатель, даже когда не работает, благодаря специально сконструированной конфигурации крыльчаток

Имеет собственный защитный предохранитель

Запатентованная Технология, способная реконструировать автомобильную промышленность, предлагая увеличение мощности любому двигателю; в то же самое время фактически экономя топливо

Изготовленный в Германии в соответствии с Высокими Стандартами TUV

ЭЛЕКТРО ТУРБОНАГНЕТАТЕЛЬ от KAMANN — это самый эффективный и самый малозатратный тюнинг-прибор

Турбина для ВСЕХ типов транспортных средств

Крайне выгодная цена

ВЕРНУТЬСЯ НА ГЛАВНУЮ СТРАНИЦУ

Открыть больше изображений

{ 54 Комментариев }

2. ТУРБОНАГНЕТАТЕЛЬ KAMANN (super power booster)ATLAS TUNING 29.06.2008 в 22:22

Всем интересующимся сообщаем, что в постоянном наличии появился нагнетатель класса SUPER, отличительными чертами которого являются:

1. объем нагнетаемого воздуха 15 000 литров в минуту (без возможности использования блока увеличения напряжения PTU)

2. давление наддува до 0,1 бара

3. размеры и подключение аналогично NORMAL POWER BOOSTER (электрический турбонагнетатель класса N)

4. полное описание и преимущества аналогичны NORMAL POWER BOOSTER и ознакомиться с подробной информацией можно здесь

5. возможность установки — ТОЛЬКО на двигатели объемом более 1,8 бензин и 1,6 дизель; при этом установка нагнетателя на двигателях объемом свыше 2,0-2,2 литра возможна за датчиком расхода воздуха

6. увеличение воздушного потока и давления достигнуто благодаря использованию нового мощного электродвигателя с измененной конфигурацией крыльчатки

7. Запатентованное немецкое качество и сертификация TUV

Настоящий электро-наддув — Сообщество «Академия Мощности (консультации по тюнингу)» на DRIVE2

Навеяно недавней записью про вентилятор вентиляции салона которым тут кто-то догадался сделать наддув мотора. Давайте раз и навсегда покончим с этой ересью.

НЕ МОГУТ ВЕНТИЛЯТОРЫ СОЗДАВАТЬ ИЗБЫТОЧНОЕ ДАВЛЕНИЕ! Это не их предназначение. Врослые мужики блин, а в сказки верите. ЗАбудьте про ветродуйки от печек, фенов, листодувов и прочее барахло — они не создают наддув.

Давление создают ТОЛЬКО КОМПРЕССОРЫ! Такова их конструкция — сжимать воздух. Объём зависит уже от размера компрессора.

Теперь к делу. Электро наддув — вещь реальная. Но условие одно — чтобы именно компрессор создавал давление, приводимый в действие электро мотором. Но это всё связано с огромным потреблением тока.

Вот пример грамотного и правильного электро нагнетателя

ru.aliexpress.com/item/Ke…25-42a0-bde4-b8e115d41def

Кит построен на полноценном центробежном компрессоре. Мотор бесколлекторный. К слову, поверьте мне — только бесколлекторный мотор может создать достаточный крутящий момент и обороты чтобы вращать компрессор. Он требует специального контроллера скорости вращения, мотор 3х фазный.

Обороты компрессора в зависимости от положения дросселя. Там сигнал 0-5В. Зависимость к скорости вращения. 0в — нет вращения крыльчатки. 5в — полная скорость вращения крыльчатки. Рост по экспоненте, не линейный.

В силу огромного электро потребления надуть хоть какой-то избыток можно только в очень малолитражном моторе. от 0.7л до 1.5л. Чем больше объём тем меньше буст. На 1.5л предел наддува на подобном ките будет не более 0.2-0.3 избытка. На 0.7л можно рассчитывать на 0.4-0.5Интеркулер для такого сетапа не требуется, будет достаточно холодного впуска.

У меня кей-кар, тойота ярис 1л. мощности в нём мало, турбо и компрессоры ставить туда не хочется, это не стоит того. Поэтому были идеи чисто из исследовательского интереса запихнуть электро наддув, настоящий, на турбо компрессоре с приводом от бесколлекторника. Я даже уже всё посчитал (спасибо авиамодельному хобби), но выводы неутешительные. Генератор нужен 90-100А. Аккумулятор тоже ёмкий и с огромными токами отдачи. Все элементы системы — не могут работать продолжительное время на максимальной мощности — нагрев достигает значительных величин. Греется мотор и его регулятор скорости.

Кстати контроллер можно настроить чтобы включение выключение было по требованию, БК-моторы раскручиваются моментально о турбо лаге можно не думать.

Так что если у кого малолитражный карманный мотор до 1.5л — у вас есть реальный шанс установить работающий электро наддув на сток машину. Но с нынешним курсом $ это будет очень и очень дорого. Отдача заметна, но JZ-ом мотор не станет)

Кстати идея уже опробована многими энтузиастами

Автомобильная электротурбина

Наиболее действенным способом увеличения мощности двигателя автомобиля является турбина. Однако она имеет ряд существенных недостатков таких как: наличие турбоямы, оптимальная работа в небольшом диапазоне оборотов двигателя, невысокий ресурс, сложность установки в неподготовленный для этого двигатель. Многие из этих проблем способна решить электротурбина. С электротурбиной необходимое давление наддува можно создать в любой момент и можно сбавлять обороты не боясь, что давление понизится. В электротурбине нет горячей части разогреваемой до тысячи градусов. Это положительно сказывается на её ресурсе, цене и простоте установки. Данная статья будет посвящена нашей разработке в этом направлении.

Разработка и конструктивные особенности На данный момент в Китае можно купить множество электротурбин, которые ставятся прямо на вход перед воздушным фильтром. Однако они оказываются на 100% бесполезны. Для обеспечения необходимого давления и большого объема подаваемого воздуха мощность электродвигателя должна составлять около 4КВт. У китайских турбин от силы несколько сот ватт.

Для данной задачи нами специально был разработан бесколлекторный электромотор способный выдать до 5КВт мощности и который может раскрутить турбину до 50000RPM. Мотор был специально спроектирован так, чтобы на полной мощности он давал своё максимальный КПД в 93%, тогда он будет выделять 350Вт тепла, которые вполне реально отводить и в теории наш мотор может выдавать полный наддув постоянно. Подробнее с характеристиками нашего мотора можно ознакомиться по ссылке.

Для питания данного мотора нами было решено использовать два автомобильных аккумулятора. Это сильно упростит процесс эксплуатации и цену установки. Один аккумулятор используется штатный, второй подключается к нему последовательно. Для подзарядки второго аккумулятора, он переподключается к первому через высокоточные реле контакторы. Литиевые аккумуляторы стоили бы на порядок дороже, при этом для них понадобилась бы специальная зарядка и очень бережная эксплуатация с соблюдением правильного температурного режима. Однако у данного решения есть и минус. Для питания мотора на полной мощности нужен ток в районе 250А, свинцовые аккумуляторы способны выдать такой, но не продолжительно(секунд на 10-30). Затем аккумуляторам нужно будет немного “отдохнуть”. Однако нам кажется этого вполне достаточно, редко от двигателя требуется полная мощность на более длительный срок.

В качестве самой турбины нами использовалась данная турбина (её характеристики также доступны по ссылке).

Мы удалили из неё всё лишнее и расточили под крепление мотора. Все подшипники находятся непосредственно в моторе и крыльчатка одевается на его вал, что автоматически даёт соосность вала мотора и крыльчатки. Поскольку турбина будет вращаться на очень больших оборотах мы подобрали в мотор высокоскоростные подшипники SKF итальянского производства.

Для работы бесколлекторного мотора нужен контроллер и на такой большой ток он достаточно дорогой. Однако мы специально подбирали токи и напряжения так, чтобы для этой задачи подошёл наиболее мощный из дешевых контроллер стоимостью 1500р. Данного контроллера хватает на грани на полную мощность и ему при этом требуется обеспечить очень хорошее охлаждение. Более мощные контроллеры стоят уже дороже 10000р.

Результат

Замеры нашего мотора на мощности до 1000Вт показали, что характеристики нашего мотора (потребление, обороты, Kv) достаточно близки к рассчитанным при моделировании. Большой объем статора и медной проволоки смогли обеспечить высокий КПД и низкий нагрев. При должном питании турбина с ним разгоняется до нужных оборотов. Но к сожалению мы пока не смогли провести полноценные испытания на полной мощности. При питании от двух аккумуляторов, через 2 секунды после набора полных оборотов контроллер сгорел, из-за отсутствия должного охлаждения. Мы заказали новый контроллер и планируем поместить его в ёмкость с трансформаторным маслом, что должно обеспечить его наилучшим охлаждением. Видео тестов работы турбины с питанием 600 и 1000 ватт Вывод В итоге нам удалось создать рабочую электротурбину, которая обладает не высокой стоимостью и достаточно проста в установке. Далее будут проходить испытания уже на реальном автомобиле. Примерная стоимость необходимых компонентов:

  • Мотор -17000р
  • Турбина -20000р
  • Аккумулятор -3000р
  • 4 реле -3000р
  • Дополнительная электроника, пайпы, воздуховоды -5000р

Итого стоимость комплекта турбины выйдет в районе 50000р. P.S.

Автором данной идеи является Frimen3 ([email protected]). Он уже давно занимается проработкой этого вопроса geektimes.ru/post/252076 и он как раз и заказал у нас разработку мотора под данную задачу.

Теги:

  • bldc
  • турбина
  • турбонаддув
  • электродвигатель

Турбина электрическая на ваз – Электро турбина на авто. Возможно ли это? Можно ли сделать своими руками — Тюнинг ВАЗ -Ремонт автомобилей своими руками

Нагнетатель воздуха – оптимальный способ увеличить мощность!

На заре автомобилестроения инженеры решали вопрос увеличения мощности двигателей внутреннего сгорания, что называется, в лоб – увеличивали количество и размеры цилиндров. Однако практичность таких разработок даже во времена дешевой нефти была под большим вопросом. Нагнетатель воздуха позволил решить эту проблему своими руками.

Содержание

  1. Турбонагнетатели – с чем столкнулись инженеры?
  2. Нагнетатель воздуха – как влить силы в двигатель?
  3. Механический турбонагнетатель воздуха – своими руками совершенствуем авто!
  4. Турбонагнетатель – универсальный наддув своими руками
1 Турбонагнетатели – с чем столкнулись инженеры?

Сложно это представить, но еще в 1909 году автомобиль с двигателем внутреннего сгорания установил рекорд скорости в 200 км/ч – достижение для тех времен невероятное. Еще сложнее представить объем двигателя, благодаря которому удалось разогнать авто до такой скорости – 28 литров! Даже речи быть не могло, чтобы запустить такие агрегаты в массовое производство, ведь их обслуживание своими руками было практически невозможным, ввиду огромных габаритов двигателя.

К счастью, дальнейшие разработки автомобильных инженеров велись в сторону уменьшения объема при сохранении мощностей, а также упрощения конструкции. Чтобы автомобиль стал массовым, следует дать возможность ремонтировать его своими руками – так размышляли первые автомобилестроители и были совершенно правы.

Благодаря появлению нагнетателя, удалось при сохранении всех параметров сходу увеличить мощность на целых 50 %! Сегодня опытному автомобилисту не составит труда своими руками установить одну из популярных систем турборежима.

Рекомендуем ознакомиться

  • Компрессор пневмоподвески Мерседес W220
  • Ремкомплект компрессора пневмоподвески Туарега
  • Монтирование турбонаддува своими руками – о процессе в деталях
  • Автосканер для самостоятельной диагностики любой машины

Представить принцип работы такого устройства совершенно не сложно даже школьнику младших классов. Работу мотора обеспечивает постоянное сгорание топливно-воздушной смеси, которая поступает в цилиндры двигателя. В зависимости от возможностей двигателя и режимов его работы устанавливается оптимальное соотношение воздуха и топлива. В обычных условиях объем ТВС ограничен размерами цилиндра – внутрь камеры смесь попадает благодаря разрежению на такте впуска.

Нагнетатель воздуха позволяет подать внутрь цилиндра на впуске больше топливно-воздушной смеси. Больше ТВС – больше энергии при сгорании, больше мощность агрегата. Казалось бы, все просто, как дважды два, однако без нюансов не обошлось. Увеличение мощности двигателя таким способом повлекло целый ряд проблем. Главная из них – возрастание количества тепловой энергии при сгорании смеси, что в свою очередь влечет быстрое прогорание поршней, клапанов, поломку системы охлаждения. И далеко не всегда последствия удается ликвидировать своими руками.

Кроме того, с увеличением объема ТВС увеличивается и шанс детонации двигателя в буквальном смысле этого слова. Даже без детонации преждевременный износ агрегата гарантирован. Чтобы уменьшить негативные последствия для автомобиля (избежать их полностью не удается), принято использовать высокооктановое топливо, а также декомпрессию. В первом случае приходится своими руками платить немалые деньги, а во втором существенно снижается мощность.

2 Нагнетатель воздуха – как влить силы в двигатель?

С развитием автомобилестроения возникали и различные способы компрессии воздуха. Многие разработки уверенно дошли и до наших дней. Итак, разберемся, какие способы наддува существуют:

  1. Механический – «отец» нагнетателей, возникший практически сразу же после появления ДВЗ. В действие такой наддув приводится коленвалом мотора.
  2. Электрический – более современный вариант турбонаддува, в котором излишнее давление в цилиндрах создает электрический компрессор.
  3. Турбонаддув – нагнетатель в такой системе работает от давления выхлопных газов и компрессора.
  4. Комбинированный наддув – совмещение различных систем, чаще всего механической и турбо.

Как правило, такие системы серийно на автомобили не устанавливаются, что дает автолюбителям множество возможностей для тюнинга своими руками.

3 Механический турбонагнетатель воздуха – своими руками совершенствуем авто!

ВАЖНО ЗНАТЬ!

У каждого автомобилиста должно быть универсальное устройство для диагностики своего автомобиля. 

Произвести чтение, сброс, анализ всех датчиков и настройку бортового компьютера автомобиля Вы сможете самостоятельно с помощью специального сканера… 

Читать далее.. »

Наиболее эффективен режим турбо на впрысковых бензиновых двигателях. Моторы карбюраторного типа также могут работать с механическим нагнетателем, однако им необходима определенная доработка своими руками, в частности, установка жиклеров с увеличенным сечением и другие меры. В случае с инжекторным двигателем все сводится к новой прошивке.

Механический нагнетатель, работающий от коленвала двигателя, имеет несомненное достоинство – он работает абсолютно синхронно с агрегатом и в режиме турбо обеспечивает равномерную подачу воздуха в соответствии с оборотами мотора. Однако такое устройство будет отбирать для своей работы часть мощности движка.

Самыми распространенными вариантами построения механических нагнетателей, которые можно установить своими руками, являются три типа:

  • Центробежный аппарат – применяется как самостоятельно в виде компрессора, так и в комбинации с другими устройствами. Принцип работы достаточно прост – лопатки, вращающиеся на большой скорости, захватывают воздух и забрасывают внутрь корпуса, который имеет улиткообразную форму. На выходе из корпуса поток воздуха приобретает нужное для режима турбо давление. Невысокая стоимость устройства и возможность установки своими руками сделали его наиболее популярным. Однако в его работе хватает и сложностей, в частности, с техобслуживанием.
  • Нагнетатель ROOTS – представляет собой лопатки ротора, которые помещены в замкнутый корпус. Воздух захватывается на входе, за счет высокой скорости вращения лопаток воздух приобретает более высокое давление на выходе. Главный недостаток устройства такого типа – неравномерность подачи воздушного потока, что вызывает пульсацию давления в режиме турбо. Однако относительно тихая работа, надежность и компактность заставляют автомобилистов мириться даже с таким недостатком. При определенных навыках обращения с техникой вам не составит труда установить такой наддув своими руками.
  • Нагнетатель LYSHOLM – представитель винтового типа аппаратов. Принцип работы схож с предыдущим – поток воздуха создается роторами, которые вращаются на высокой скорости. Главное отличие этого типа нагнетателей – маленький зазор между винтами, что вызывает множество сложностей в проектировании и установке таких изделий. Встречаются они на автомобилях нечасто и стоят недешево. Устанавливать их своими руками не рекомендуется, лучше обращаться к специалистам по турбонаддуву.
4 Турбонагнетатель – универсальный наддув своими руками

Как для бензиновых, так и для дизельных двигателей возможно применение турбонагнетателя. Это устройство представляет собой комбинацию компрессора и турбины, которая использует давление выхлопных газов для работы. Последнее устройство создает ряд проблем – турбина должна выдерживать высокие температуры и огромную скорость вращения, а значит, материалы для ее изготовления должны быть сверхпрочными. Некоторую часть нагрузки с турбины снимает компрессор, что и позволяет комплексу в целом справляться со своей задачей.

Недостаток устройства заключается в некотором запаздывании режима турбо – н

motorsmarine.ru

Автомобильная электротурбина / Habr

Наиболее действенным способом увеличения мощности двигателя автомобиля является турбина. Однако она имеет ряд существенных недостатков таких как: наличие турбоямы, оптимальная работа в небольшом диапазоне оборотов двигателя, невысокий ресурс, сложность установки в неподготовленный для этого двигатель.

Многие из этих проблем способна решить электротурбина. С электротурбиной необходимое давление наддува можно создать в любой момент и можно сбавлять обороты не боясь, что давление понизится. В электротурбине нет горячей части разогреваемой до тысячи градусов. Это положительно сказывается на её ресурсе, цене и простоте установки.

Данная статья будет посвящена нашей разработке в этом направлении.

Разработка и конструктивные особенности

На данный момент в Китае можно купить множество электротурбин, которые ставятся прямо на вход перед воздушным фильтром. Однако они оказываются на 100% бесполезны. Для обеспечения необходимого давления и большого объема подаваемого воздуха мощность электродвигателя должна составлять около 4КВт. У китайских турбин от силы несколько сот ватт.

Для данной задачи нами специально был разработан бесколлекторный электромотор способный выдать до 5КВт мощности и который может раскрутить турбину до 50000RPM. Мотор был специально спроектирован так, чтобы на полной мощности он давал своё максимальный КПД в 93%, тогда он будет выделять 350Вт тепла, которые вполне реально отводить и в теории наш мотор может выдавать полный наддув постоянно. Подробнее с характеристиками нашего мотора можно ознакомиться по ссылке.

Для питания данного мотора нами было решено использовать два автомобильных аккумулятора. Это сильно упростит процесс эксплуатации и цену установки. Один аккумулятор используется штатный, второй подключается к нему последовательно. Для подзарядки второго аккумулятора, он переподключается к первому через высокоточные реле контакторы. Литиевые аккумуляторы стоили бы на порядок дороже, при этом для них понадобилась бы специальная зарядка и очень бережная эксплуатация с соблюдением правильного температурного режима.

Однако у данного решения есть и минус. Для питания мотора на полной мощности нужен ток в районе 250А, свинцовые аккумуляторы способны выдать такой, но не продолжительно(секунд на 10-30). Затем аккумуляторам нужно будет немного “отдохнуть”. Однако нам кажется этого вполне достаточно, редко от двигателя требуется полная мощность на более длительный срок.

В качестве самой турбины нами использовалась данная турбина (её характеристики также доступны по ссылке).

Мы удалили из неё всё лишнее и расточили под крепление мотора. Все подшипники находятся непосредственно в моторе и крыльчатка одевается на его вал, что автоматически даёт соосность вала мотора и крыльчатки. Поскольку турбина будет вращаться на очень больших оборотах мы подобрали в мотор высокоскоростные подшипники SKF итальянского производства.

Для работы бесколлекторного мотора нужен контроллер и на такой большой ток он достаточно дорогой. Однако мы специально подбирали токи и напряжения так, чтобы для этой задачи подошёл наиболее мощный из дешевых контроллер стоимостью 1500р. Данного контроллера хватает на грани на полную мощность и ему при этом требуется обеспечить очень хорошее охлаждение. Более мощные контроллеры стоят уже дороже 10000р.

Результат

Замеры нашего мотора на мощности до 1000Вт показали, что характеристики нашего мотора (потребление, обороты, Kv) достаточно близки к рассчитанным при моделировании. Большой объем статора и медной проволоки смогли обеспечить высокий КПД и низкий нагрев. При должном питании турбина с ним разгоняется до нужных оборотов. Но к сожалению мы пока не смогли провести полноценные испытания на полной мощности. При питании от двух аккумуляторов, через 2 секунды после набора полных оборотов контроллер сгорел, из-за отсутствия должного охлаждения. Мы заказали новый контроллер и планируем поместить его в ёмкость с трансформаторным маслом, что должно обеспечить его наилучшим охлаждением.

Видео тестов работы турбины с питанием 600 и 1000 ватт

Вывод

В итоге нам удалось создать рабочую электротурбину, которая обладает не высокой стоимостью и достаточно проста в установке. Далее будут проходить испытания уже на реальном автомобиле.

Примерная стоимость необходимых компонентов:

  • Мотор -17000р
  • Турбина -20000р
  • Аккумулятор -3000р
  • 4 реле -3000р
  • Дополнительная электроника, пайпы, воздуховоды -5000р

Итого стоимость комплекта турбины выйдет в районе 50000р.

P.S.

Автором данной идеи является Frimen3 ([email protected]). Он уже давно занимается проработкой этого вопроса geektimes.ru/post/252076 и он как раз и заказал у нас разработку мотора под данную задачу.

habr.com

Механический нагнетатель своими руками

Одной из возможностей продлить жизнь старому автомобилю, например любому ВАЗ 2107, 2106, 2114, 2112, является его тюнинг. Конечно, речь в данном случае идет не об установке новых дисков и чехлов, а в первую очередь о повышении мощности двигателя. И один из самых простых и вполне доступных вариантов обеспечения этого – установить на мотор механический нагнетатель своими силами.

Механический нагнетатель на ВАЗ – за и против

Чем больше мотор и чем больше в нем цилиндров – тем выше его мощность. Таков самый первый вывод при наблюдении за моторами и машинами. Но это не всегда именно так. Чем больше топлива сгорает в цилиндрах двигателя, тем большую мощность он способен показать. Но объем цилиндров конечен, а мощность хочется иметь повышенную. Вот в этих случаях на помощь приходит механический нагнетатель воздуха.

Принцип его действия чрезвычайно прост и работает на любых автомобилях, в том числе семейства ВАЗ 2107, 2106, 2114, 2112 – он обеспечивает подачу дополнительного воздуха в мотор, в результате чего:

  • увеличивается продувка цилиндров, и они лучше освобождаются от остатков сгоревшего топлива;
  • в цилиндры мотора попадает больше топлива, что обеспечивает получение большей мощности;
  • повышается степень сжатия, что также дает прирост мощности.

Такой подход практически похож на режим турбо, применяемый на дизелях. Только там для этих целей используется турбонагнетатель, приводимый в действие выхлопными газами, а в этом случае – механический нагнетатель воздуха, который ремнем связан с коленвалом двигателя. Такой подход гораздо проще, подача воздуха зависит от оборотов двигателя, чем они выше, тем его поступает больше; а также не требует обеспечения режимов работы турбины и может быть выполнен своими руками на любом автомобиле ВАЗ.

Стоит учесть, что если механический нагнетатель ставится на инжекторную машину ВАЗ, то потребуется изменение прошивки. Однако подобную доработку можно сделать и для карбюраторного авто, только в этом случае, скорее всего, придется менять жиклеры в карбюраторе и регулировать угол опережения зажигания.

Не стоит забывать, что вами производится форсирование двигателя ВАЗ, будь то любая его модель 2107, 2106, 2114, 2112, работа должна выполняться комплексно, и только тогда возможно получение ожидаемого результата. Однако это не такая уж и большая плата за прирост мощности.

Как установить воздушный нагнетатель своими руками

Существует несколько подходов, позволяющих установить механический нагнетатель воздуха на автомобили семейства ВАЗ своими руками. Это изготовление самим такого устройства, обеспечивающего режим турбо или форсирование двигателя, или использование готового КИТ-набора.

Самодельный нагнетатель на ВАЗ

При таком подходе определяющим будет механический нагнетатель воздуха. Именно от него зависит вся будущая конструкция. Главное – найти соответствующий требованиям воздушный нагнетатель от импортного автомобиля, или придется использовать самодельный. Возможно и такое, причем в этом случае применяются подходящие детали и узлы от совершенно неожиданных устройств, например, пылесоса.

Изготавливая подобный самодельный воздушный нагнетатель, необходимо учитывать буквально все – габариты, вес, размещение в подкапотном пространстве, как и где будет располагаться приводной шкив и ремень, производительность этого устройства, режимы работы (кратковременный или продолжительный), возможность смазки и многое, многое другое.После того, как появится ясность с компрессором, необходимо рассчитать реализацию турбо режима для двигателя.

Здесь надо учесть, каким образом будет изменена топливная и охлаждающая система автомобиля, какие изменения необходимо внести в его управление и как это осуществить, какое давление окажется допустимым для безопасной работы мотора, при реализации с помощью подобного устройства режима турбо.

Даже приведенный далеко не полный перечень вопросов показывает, что изготовить самодельный воздушный нагнетатель на ВАЗ любого семейства, хоть 2107,2106, хоть 2114, 2112, достаточно сложно, но возможно. Примером может послужить фото, показывающее, что такая работа успешно выполнена. Правда, это не ВАЗ, но важен сам факт – изготовить самодельный воздушный компрессор, в котором его приводной узел подсоединен к коленвалу двигателя, – возможно.

Приводной нагнетатель своими руками – из КИТ-набора

Да, есть в продаже такие комплекты, позволяющие своими руками реализовать режим турбо в автомобилях ВАЗ 2107, 2106, 2114, 2112. Как правило, он включает в себя все нужное для сборки и установки подобного устройства на автомобиль – сам компрессор, ремни, приводной узел, кронштейны и воздуховоды. Что собой представляет подобный комплект, позволяет понять приведенное фото.

Главное достоинство подобного подхода по реализации режима турбо на своей машине – простота и полная адаптация технических решений под конкретный вариант – 2107, 2106, 2114, 2112. Как правило, изготовителями КИТ-наборов являются китайские производители, что обеспечивает их достаточно приемлемую цену.

В качестве достоинств реализации режима турбо таким образом, стоит отметить его заточенность именно на автомобили ВАЗ той или иной модели (2107, 2106, 2114, 2112). К преимуществам подобного подхода следует также отнести то, что при некоторых условиях, когда уровень создаваемого дополнительного давления не больше половины бара, не требуется вмешательства в топливную систему автомобиля.

Расписывать порядок реализации режима турбо из подобного набора нецелесообразно, в каждом из них есть своя инструкция по сборке. К недостаткам можно отнести страну-изготовителя, но здесь уж как повезет. Как выглядит автомобиль после доработки и как ее выполнить, дополнительно поможет понять видео

Один из доступных автолюбителям способов форсировать мотор старого автомобиля и придать ему новую жизнь – поставить нагнетатель воздуха. Эту работу можно выполнить и своими руками, если использовать имеющиеся в продаже КИТ-наборы на автомобили ВАЗ.

znanieavto.ru

Электро турбина на авто. Возможно ли это? Можно ли сделать своими руками. Только реальная правда

Если немного забежать вперед по теме – то получается, что сейчас все турбированные двигатели используют механические компрессоры воздуха, у такого подхода есть много плюсов и много минусов. Но недавно многие компании стали задумываться над электро турбинами, которые не будут использовать отработанные газы авто, а также не будут иметь механических подключений и приводов, а нагнетать воздух будет электродвигатель, который будет «питаться» от бортовой системы …

Задумка неплохая! Ведь можно избежать многих минусов механических систем, особенно турбин которые работают от отработанных газов, такие как:

1) «Турбоямы»

2) Охлаждение турбины

3) Смазка моторным маслом

4) Расход масла

5) НУ и конечно же ресурс

Если подвести черту, можно понять что механические системы, далеки от идеала. Конечнокомпрессоры которые работают от приводов, будут надежнее. Однако и у них есть минусы, это тот же привод который использует для работы обычный ремень, который со временем изнашивается.

В общем, подумали разработчики и поняли, что механику можно заменить на электрику! Или нельзя?

Принцип строения

Нужно отметить, что сейчас некоторые немецкие производители имеют в строении своих моторов такие нагнетатели. И ставятся они как вы поняли, в системе забора воздуха. Первыми применили такие нагнетатели компании Mercedes, BMW и AUDI.

Принцип здесь прост – ставится мощный «вентилятор», который создает давление примерно от 0,5 атмосферы (а возможно и более). Запитан от электро системы автомобиля, он нагнетает в двигатель дополнительный кислород необходимый для увеличения мощности. С настройками подачи топлива, можно добиться существенного прироста – около 20 – 30 %.

Электро турбину стоит настраивать и на определенные обороты, например на холостых она должна работать медленнее, а на высоких оборотах соответственно быстрее. Получается чуть ли не идеальная система! Но в чем же подвох, где минусы? И знаете, они есть.

Минусы электрического варианта

Многие мои читатели думают – что сделать такую систему очень просто, нужно взять какой-нибудь кулер и вставить его в патрубок забора воздуха и вот оно счастье! Такие «чудо-кулеры» продаются, как правило в китайских интернет магазинах, про такие типы поговорим ниже.

Однако ребята тут не все так просто. В нормальном (на холостых) режиме, атмосферный двигатель 1,6 литра потребляет примерно 300 – 400 литров воздуха за час работы. А на больших оборотах скажем в 4000 – 5000 умножаем эту цифру на 4 – 5, то есть 1200 – 1600 литров. Просто представите этот объем! Если вычислить минутное потребление 300/60 = 5 литров в минуту, или 20 при больших оборотах.

Так вот – электро турбина должна увеличивать эту цифру, а не тормозить ее! Если вы поставите слабый двигатель, он не будет нагнетать нужное давление, а создаст эффект «воздушной пробки», то есть он своими лопастями будет тормозить приток воздуха в двигатель – мешать нормальному проходу.

А теперь представьте, какой нужен электрический вариант двигателя для нагнетания такого объема! Повторюсь для повышения производительности нужно хотя бы 6 – 7 литров воздуха на холостых, и 25 на высоких и это для 1,6 литрового варианта, для больших объемов нужно больше.

Если провести аналогию с немецкими производителями, то там применяется как минимум бесколлекторный 0,5 КВт электромотор, который вращается с бешенными оборотами, может достигать до 20 000 и его способности к давлению составляют от 1 до 5 атмосфер.

Для более мощных автомобилей, применяются более мощные двигатели до 0,7 КВт.

Как становится понятно штатный генератор может и не потянуть такое потребление электричества, поэтому его заменяют на более мощный, либо ставят дополнительный.

А как известно высокое потребление энергии просто тормозит генераторы, а значит и увеличивает торможение двигателя, что скажется на его отдаче, понижается КПД.

Однако, проведенные эксперименты выявили рост производительности, примерно на 20 – 30% это существенно. Но из-за сложности и дороговизны устройств, применение на автомобилях пока не имеет массового производства.

Например, механические компрессоры намного дешевле и производительнее. Иногда разница в цене может достигать 5 – 7 раз.

Пару слов о китайских электро турбинах

Буквально 2 года назад, «автоинтернет» просто взорвался от электрических турбин из Китая. Предлагалась небольшая «штуковина», которая устанавливалась в разрыв шланга воздухозабора, которая якобы нагнетала воздух с давлением в двигатель, обещанное увеличение мощности аж до – 15%! Сам двигатель представлял из себя непонятный кулер, ни потребление электричества, ни обороты, ни прокачиваемый воздух – показателей не было. Если разобрать его даже визуально, то становится понятно – что это кулер на подобии продвинутых компьютерных, ну что он может увеличить? НИЧЕГО! Так что просто не покупаем – это РАЗВОД.

Сейчас конечно на тех же китайских сайтах начинают появляться другие электро турбины, многие сделаны даже в форме улитки – аля механический компрессор. Но опять же нет ни показателей давления, ни потребления, ни перекачки воздуха. Думайте, прежде чем покупать. Смотрим познавательный ролик.

Можно ли сделать электро вариант своими руками

Гипотетически можно, причем многие такое устанавливают на свой автомобиль. Лично я также задумывался над установкой на свой авто, но цена меня остановила.

Вам нужно решить рад пунктов:

1) Однозначно установка мощного генератора, что на иномарку уже дорого.

2) Мощный и компактный электромотор, желательно бесколлекторный именно он отдает большие обороты при оптимальном потреблении энергии. Лично я видел такие для компактных моделей, однако мощностью от 0,5 Квт стоит также не дешево.

3) Крыльчатка и корпус. Также нужно сделать самому либо купить, для максимального нагнетания воздуха. Также непростая задача.

4) Ну и конечно стабилизатор или инверторы, для питания электромотора.

Задачи не простые, на некоторые иномарки нет мощных генераторов, так что сделать очень сложно!

Но многие умельцы, в гараж устанавливают на свои автомобили, прирост мощности действительно можно достичь до 20 – 30 %.

Причем многие ставят дополнительный датчик потребления воздуха в патрубок перед турбиной, он «видит» прокачиваемый объем и автоматически регулирует большую подачу топлива (подает значения в ЭБУ), для обогащения топливной смеси. Так что прошивка может и не понадобиться.

Если подвести итог, получается – электро турбина на авто, это возможно, даже скажу больше ее можно сделать своими руками, однако не все так просто и часто «игра не стоит свеч». Ведь вам нужно переделать не только электро систему автомобиля, но и систему подачи топлива, возможно нужна прошивка ЭБУ.

Источник

Понравился наш сайт? Присоединяйтесь или подпишитесь (на почту будут приходить уведомления о новых темах) на наш канал в МирТесен!

4kolesa.mirtesen.ru

Электротурбина

Создаем рабочую электротурбину, которая обладает не высокой стоимостью и достаточно проста в установке.

Наиболее действенным способом увеличения мощности двигателя автомобиля является турбина. Однако она имеет ряд существенных недостатков таких как: наличие турбоямы, оптимальная работа в небольшом диапазоне оборотов двигателя, невысокий ресурс, сложность установки в неподготовленный для этого двигатель.

Многие из этих проблем способна решить электротурбина. С электротурбиной необходимое давление наддува можно создать в любой момент и можно сбавлять обороты не боясь, что давление понизится. В электротурбине нет горячей части разогреваемой до тысячи градусов. Это положительно сказывается на её ресурсе, цене и простоте установки.

Данная статья будет посвящена нашей разработке в этом направлении.

Разработка и конструктивные особенности

На данный момент в Китае можно купить множество электротурбин, которые ставятся прямо на вход перед воздушным фильтром. Однако они оказываются на 100% бесполезны. Для обеспечения необходимого давления и большого объема подаваемого воздуха мощность электродвигателя должна составлять около 4КВт. У китайских турбин от силы несколько сот ватт.

Для данной задачи нами специально был разработан бесколлекторный электромотор способный выдать до 5КВт мощности и который может раскрутить турбину до 50000RPM. Мотор был специально спроектирован так, чтобы на полной мощности он давал своё максимальное КПД в 93%, тогда он будет выделять 350Вт тепла, которые вполне реально отводить и в теории наш мотор может выдавать полный наддув постоянно. 

Для питания данного мотора нами было решено использовать два автомобильных аккумулятора. Это сильно упростит процесс эксплуатации и цену установки. Один аккумулятор используется штатный, второй подключается к нему последовательно. Для подзарядки второго аккумулятора, он переподключается к первому через высокоточные реле контакторы. Литиевые аккумуляторы стоили бы на порядок дороже, при этом для них понадобилась бы специальная зарядка и очень бережная эксплуатация с соблюдением правильного температурного режима.

Однако у данного решения есть и минус. Для питания мотора на полной мощности нужен ток в районе 250А, свинцовые аккумуляторы способны выдать такой, но не продолжительно(секунд на 10-30). Затем аккумуляторам нужно будет немного “отдохнуть”. Однако нам кажется этого вполне достаточно, редко от двигателя требуется полная мощность на более длительный срок.

Мы удалили из неё всё лишнее и расточили под крепление мотора. Все подшипники находятся непосредственно в моторе и крыльчатка одевается на его вал, что автоматически даёт соосность вала мотора и крыльчатки. Поскольку турбина будет вращаться на очень больших оборотах мы подобрали в мотор высокоскоростные подшипники SKF итальянского производства. 

Для работы бесколлекторного мотора нужен контроллер и на такой большой ток он достаточно дорогой. Однако мы специально подбирали токи и напряжения так, чтобы для этой задачи подошёл наиболее мощный из дешевых контроллер стоимостью 1500р. Данного контроллера хватает на грани на полную мощность и ему при этом требуется обеспечить очень хорошее охлаждение. Более мощные контроллеры стоят уже дороже 10000р.

Результат

Замеры нашего мотора на мощности до 1000Вт показали, что характеристики нашего мотора (потребление, обороты, Kv) достаточно близки к рассчитанным при моделировании. Большой объем статора и медной проволоки смогли обеспечить высокий КПД и низкий нагрев. При должном питании турбина с ним разгоняется до нужных оборотов. Но к сожалению мы пока не смогли провести полноценные испытания на полной мощности. При питании от двух аккумуляторов, через 2 секунды после набора полных оборотов контроллер сгорел, из-за отсутствия должного охлаждения. Мы заказали новый контроллер и планируем поместить его в ёмкость с трансформаторным маслом, что должно обеспечить его наилучшим охлаждением. 

Видео тестов работы турбины с питанием 600 и 1000 ватт

Вывод

В итоге нам удалось создать рабочую электротурбину, которая обладает не высокой стоимостью и достаточно проста в установке. Далее будут проходить испытания уже на реальном автомобиле.

Примерная стоимость необходимых компонентов:

  • Мотор -17000р
  • Турбина -20000р
  • Аккумулятор -3000р
  • 4 реле -3000р
  • Дополнительная электроника, пайпы, воздуховоды -5000р

Итого стоимость комплекта турбины выйдет в районе 50000р. опубликовано econet.ru 

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © econet

econet.ru

Чем хорош электрический турбонаддув | MaxKm.ru

Теория и навыки вождения

28.11.2015

Чем хорош электрический турбонаддув

Что за понятие электрический турбонаддув, которое все чаще встречается в последних новинках автопрома? Давайте разберемся. Стремясь сделать автомобили как можно более экономичными, автопроизводители все чаще уменьшают размеры двигателей, оснащая их технологией турбонаддува. Ведь для того, чтобы компактный двигатель оставался мощным, необходимо “помогать” ему, подавая воздух в цилиндры принудительно, под давлением.

“Сокращение размеров двигателя – это один из основных способов  уменьшить расход топлива автомобиля,” – говорит представитель французской компании Valeo, занимающейся поставкой автомобильных комплектующих. “Чтобы малолитражный двигатель мог развить большую мощность, производители обычно используют турбины, работающие от выхлопных газов. Однако, к сожалению, для турбированных двигателей характерна слабая отзывчивость на низких оборотах, называемая “эффектом турбоямы” или “турболагом”.

Этот “провал” при наборе оборотов, вызываемый инерцией турбины, стал “ахиллесовой пятой” турбомоторов. Отчасти проблему удалось решить применением твинскрольной турбины с изменяемой геометрией, или же использованием второй малой турбины в помощь первой. В обоих случаях турбины работают в более широком диапазоне оборотов двигателя, однако полностью ликвидировать “турболаг” все же не удалось. Увы, турбированным агрегатам весьма сложно обеспечить мгновенную реакцию на нажатие педали газа, естественную для атмосферных двигателей.

И вот теперь на помощь пришел новый вид турбонаддува – электрический. Что это за “зверь” и сможет ли электрический турбонаддув “изменить правила игры ”?

Изучая принципы работы электромобилей, автопроизводители обнаружили, что для электромоторов характерна мгновенная отзывчивость. Сегодня всем пересесть на электротранспорт пока нереально. Моторы и аккумуляторы электромобилей из-за своих крупных размеров обходятся недешево, да и ограниченный пробег электрокаров на одном заряде батарей устроит ни каждого.

Но почему бы не использовать небольшой электромотор для питания компрессора турбированного двигателя? Ведь тогда можно будет нагнетать воздух в двигатель без помощи отработавших газов! Именно в этом и состоит принцип работы электрического нагнетателя.

Идея использовать электрический турбонаддув не нова – о разработках в этой области уже несколько лет назад сообщали такие компании, как Mercedes-Benz, BMW и Ferrari. Но, пожалуй, больше других электрическим нагнетателем заинтересовался концерн Volkswagen – в настоящее время VW Group инвестирует огромные средства в развитие техологии электротурбонаддува или электрический турбонаддув.

Марк Жиль, занимающийся развитием технологических коммуникаций в североамериканском подразделении Volkswagen, называет главным преимуществом электрического турбонаддува “ то, что он обеспечивает ускорение на низких оборотах, в то время как обычные турбины, работающие от выхлопных газов, создают нужное давление воздуха минимум при 1500 оборотах двигателя в минуту.”

“Электромотор способен реагировать на нажатие педали газа мгновенно (в течение 250 миллисекунд),” – говорят в Valeo, добавляя, что, используя электрический турбонаддув, “можно сократить потребление топлива на 7-20 процентов”.

Компания Audi, входящая в концерн Volkswagen Group, недавно продемонстрировала свои последние достижения в области электротурбонаддува на примере концепта Clubsport TT Turbo. Полноприводный автомобиль развивает мощность в 600 л.с. и крутящий момент в 649 Нм благодаря тому, что его 2,5-литровый пятицилиндровый двигатель оснастили двумя турбинами – традиционной и электрической.

Электрокомпрессор питается от 48-вольтовой подсистемы, установленной в багажнике и, в отличие от обычной турбины,  обеспечивает крутящий момент “по первому требованию”. В итоге Clubsport TT Turbo разгоняется до 100 км/ч  всего за 3,6 секунды.

“Компрессор, питающийся от электричества, имеет существенные преимущества,” – говорит Брэд Стерц, занимающийся силовыми установками в североамериканском подразделении Audi. “Он раскручивается до максимума быстро, без какой-либо ощутимой задержки и продолжает создавать давление воздуха, когда традиционной турбине не хватает энергии выхлопных газов.”

“Такой принцип работы позволяет создавать традиционные турбонагнетатели, специально “заточенные” на подачу более высокого давления и, соответственно, обеспечивающие большую мощность двигателя, в то время как электрический компрессор будет отвечать за моментальный отклик и мощные рывки с низких оборотов в любой момент времени,” – добавляет Стерц.

Кстати, концепт Clubsport TT Turbo – это не первая попытка Audi поэкспериментировать с электронагнетателем. В прошлом году немецкий производитель снабдил электрокомпрессором 3,0-литровый дизельный двигатель, добавив его к традиционной турбине. Данная конструкция была установлена на спортивное купе RS5. На выходе получился автомобиль, способный “разменять первую сотню” за 4 секунды, расходуя при этом всего 5 литров топлива на 100 км пути. То есть, RS5 с электронаддувом оказался и быстрее, и в два раза экономичнее своего “обычного” собрата.

Так когда же электрический турбонаддув следует ожидать в широких массах? Уже в следующем году! Как сообщил производитель электронагнетателя Valeo, первым серийным автомобилем, на котором будет реализована новая технология, станет спортивный вседорожник Audi SQ7, где электрический турбонаддув получит дизельный двигатель V8, имеющий объем около 4 литров. Мощность данного силового агрегата, предположительно, составит более 400 л.с., а разгон с места до 100 км/ч – 5,5 секунд. SQ7 поступит в продажу в 2016 году.

Интерес к электрическому турбонаддуву также проявили такие компании, как Volvo, Hyundai, Kia и американский производитель Honeywell.

Так что, возможно, вскоре электрический турбонаддув станет нормой жизни, а владельцы турбированных автомобилей забудут о “турболаге”, наслаждаясь отличной тягой практически с холостых оборотов и скромными цифрами расхода топлива.

Сохранить

maxkm.ru

Электрическая турбина

Подробности

Турбина с электроприводом – новый патент компании BMW. Данная конструкция имеет множество преимуществ, главное из которых – отсутствие инерционности, которая является главным недостатком обычной турбины. При использовании электротурбины не тратится лишнее время на разгон, а также отсутствует необходимость задержка при ее остановке, что позволяет заглушить двигатель быстрее.

Электротурбина может раскручиваться не только благодаря выхлопным газам, но и с помощью электромотора. Жесткая связь между нагнетателем и ротором отсутствует, между ними встроен новый узел из электродвигателя и пары фрикционов.

Кроме того, электротурбину можно использовать также в качестве дополнительного источника энергии для зарядки аккумулятора или использования для нужд бортовой электросети в момент, когда число оборотов вала турбокомпрессора превышено. В целях предотвращения такой ситуации используют дополнительные приспособления, которые тратят энергию на снижение оборотов сами.

Принцип работы турбины с электроприводом отличается от такового у классической турбины конструкцией оси, соединяющей крыльчатки.

Когда обороты турбокомпрессора достигают максимально допустимого уровня, контроллер подключает электродвигатель в режиме генератора. Этим он предотвращает превышение максимально допустимого числа оборотов. В случае слишком редкого снижения оборотов муфтовые соединения позволят крыльчаткам вращаться независимо друг от друга, а это в свою очередь снизит нагрузку на подшипники. Электротурбина избавлена от недостатков обычной турбины, а её размер значительно уменьшен.

Разработчики BMW уверены, что их новая технология поможет производителям автомобилей соответствовать новым экологическим нормам, которые начнут действовать с 2015 года.

brturbo.ru

Электротурбина

Создаем рабочую электротурбину, которая обладает не высокой стоимостью и достаточно проста в установке.

Наиболее действенным способом увеличения мощности двигателя автомобиля является турбина. Однако она имеет ряд существенных недостатков таких как: наличие турбоямы, оптимальная работа в небольшом диапазоне оборотов двигателя, невысокий ресурс, сложность установки в неподготовленный для этого двигатель. Многие из этих проблем способна решить электротурбина. С электротурбиной необходимое давление наддува можно создать в любой момент и можно сбавлять обороты не боясь, что давление понизится. В электротурбине нет горячей части разогреваемой до тысячи градусов. Это положительно сказывается на её ресурсе, цене и простоте установки. Данная статья будет посвящена нашей разработке в этом направлении.

Разработка и конструктивные особенности

На данный момент в Китае можно купить множество электротурбин, которые ставятся прямо на вход перед воздушным фильтром. Однако они оказываются на 100% бесполезны. Для обеспечения необходимого давления и большого объема подаваемого воздуха мощность электродвигателя должна составлять около 4КВт. У китайских турбин от силы несколько сот ватт. Для данной задачи нами специально был разработан бесколлекторный электромотор способный выдать до 5КВт мощности и который может раскрутить турбину до 50000RPM. Мотор был специально спроектирован так, чтобы на полной мощности он давал своё максимальное КПД в 93%, тогда он будет выделять 350Вт тепла, которые вполне реально отводить и в теории наш мотор может выдавать полный наддув постоянно.  Для питания данного мотора нами было решено использовать два автомобильных аккумулятора. Это сильно упростит процесс эксплуатации и цену установки. Один аккумулятор используется штатный, второй подключается к нему последовательно. Для подзарядки второго аккумулятора, он переподключается к первому через высокоточные реле контакторы. Литиевые аккумуляторы стоили бы на порядок дороже, при этом для них понадобилась бы специальная зарядка и очень бережная эксплуатация с соблюдением правильного температурного режима. Однако у данного решения есть и минус. Для питания мотора на полной мощности нужен ток в районе 250А, свинцовые аккумуляторы способны выдать такой, но не продолжительно(секунд на 10-30). Затем аккумуляторам нужно будет немного “отдохнуть”. Однако нам кажется этого вполне достаточно, редко от двигателя требуется полная мощность на более длительный срок. Мы удалили из неё всё лишнее и расточили под крепление мотора. Все подшипники находятся непосредственно в моторе и крыльчатка одевается на его вал, что автоматически даёт соосность вала мотора и крыльчатки. Поскольку турбина будет вращаться на очень больших оборотах мы подобрали в мотор высокоскоростные подшипники SKF итальянского производства.  Для работы бесколлекторного мотора нужен контроллер и на такой большой ток он достаточно дорогой. Однако мы специально подбирали токи и напряжения так, чтобы для этой задачи подошёл наиболее мощный из дешевых контроллер стоимостью 1500р. Данного контроллера хватает на грани на полную мощность и ему при этом требуется обеспечить очень хорошее охлаждение. Более мощные контроллеры стоят уже дороже 10000р.

Результат

Замеры нашего мотора на мощности до 1000Вт показали, что характеристики нашего мотора (потребление, обороты, Kv) достаточно близки к рассчитанным при моделировании. Большой объем статора и медной проволоки смогли обеспечить высокий КПД и низкий нагрев. При должном питании турбина с ним разгоняется до нужных оборотов. Но к сожалению мы пока не смогли провести полноценные испытания на полной мощности. При питании от двух аккумуляторов, через 2 секунды после набора полных оборотов контроллер сгорел, из-за отсутствия должного охлаждения. Мы заказали новый контроллер и планируем поместить его в ёмкость с трансформаторным маслом, что должно обеспечить его наилучшим охлаждением. 

 

Видео тестов работы турбины с питанием 600 и 1000 ватт

Вывод В итоге нам удалось создать рабочую электротурбину, которая обладает не высокой стоимостью и достаточно проста в установке. Далее будут проходить испытания уже на реальном автомобиле.

Примерная стоимость необходимых компонентов:

 

  • Мотор -17000р
  • Турбина -20000р
  • Аккумулятор -3000р
  • 4 реле -3000р
  • Дополнительная электроника, пайпы, воздуховоды -5000р

Итого стоимость комплекта турбины выйдет в районе 50000р. опубликовано econet.ru 

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © econet

Понравилась статья? Тогда поддержи нас, жми: 

Электрификация может быть решением проблемы турбокомпрессора

Из номера Car and Driver за июнь 2018 г.

Турбодвигатели сейчас лучше, чем когда-либо. Но вот-вот они станут потрясающими. В большинстве современных турбомельниц используется турбокомпрессор, рассчитанный на получение достаточного крутящего момента при низких оборотах двигателя. Такой размер приводит к сужению турбинного колеса и корпуса, что создает значительное противодавление выхлопных газов на высоких оборотах двигателя. Высокое противодавление увеличивает склонность двигателя к детонации — проблема калибраторов двигателей, которая до сих пор часто устранялась за счет использования более высоких соотношений воздух-топливо.Эта стратегия увеличивает расход топлива и выбросы. И хотя использование более мощного турбонаддува позволяет снизить противодавление, оно также приводит к слишком большой турбо-задержке. В эту дилемму полезно вставить себя — а также пространство между турбиной турбонагнетателя и компрессором — электричество. С электродвигателем / генератором в центральном корпусе с водяным охлаждением и масляной смазкой, так называемые электронные турбины должны позволить использовать турбины большего размера для обеспечения максимальной мощности при заполнении нижней границы диапазона оборотов наддува с электрическим приводом.

В зависимости от условий нагрузки двигатель / генератор e-turbo может либо увеличивать наддув, добавляя энергию выхлопных газов для привода колеса компрессора, либо действовать как генератор с газовым приводом, превращая энергию выхлопных газов в электричество, которое можно сохранять для дальнейшего использования. Из-за их требований к мощности — около семи лошадиных сил на текущих прототипах легковых автомобилей — электрические турбины первоначально будут сочетаться с существующими 48-вольтовыми гибридными силовыми агрегатами, которые также используют ременный генератор / стартер или двигатель / генератор для увеличения крутящего момента на колесах и рекуперации электроэнергии. энергия при торможении.Контроллер трансмиссии будет выбирать среди различных вариантов генерирования и расходования мощности в зависимости от требуемого крутящего момента, сценария использования и ограничений безопасности и надежности системы.

Автомобиль и водитель

В настоящее время только один серийный автомобиль на планете — суперкар Mercedes-AMG Project One — использует электрический турбонагнетатель. Project One заимствует трансмиссию от автомобиля Mercedes-AMG Formula 1, и оба являются передовыми газо-электрическими автомобильными технологиями.Но трансмиссия Формулы 1 вряд ли сделает e-turbo доступным для масс. Скорее, именно то, что дает электрический турбокомпрессор, — эффективность, которую он открывает, — будет иметь значение в 2020 или 2021 году, когда он, вероятно, появится в автомобилях с более скромными характеристиками.

По словам Роба Кэдла, технического директора и руководителя направления электрификации компании Honeywell, каждый киловатт электроэнергии, используемый для привода турбонагнетателя, составляет около 10 киловатт (13 лошадиных сил) выходной мощности на коленчатом валу.Конечно, это не бесплатный обед — есть штраф за экономию топлива за увеличение мощности с помощью двигателя внутреннего сгорания.

Но преимущества многочисленны для первых автопроизводителей, которые будут использовать электронные турбонагнетатели в первую очередь как усилители производительности, сочетая относительно большой турбонаддув с небольшим двигателем. Кроме того, e-turbo является многообещающим средством увеличения мощности и лучшей экономии топлива, позволяя почти стехиометрическое (химически полное воздушно-топливное) сгорание при более высоком наддуве, а не при высоком соотношении воздух-топливо, часто используемом сегодня в турбодвигателях.

Способность e-turbo рекуперировать энергию — вот что отличает его от электрического нагнетателя. Оба устройства используют электроэнергию для заполнения нижней части диапазона мощности до того, как энергия выхлопных газов полностью возьмет верх, но поскольку электронный турбонагнетатель может добавить электрическую мощность обратно в систему, его привлекательность для автопроизводителей, которые борются с правилами CO 2 и корпоративными средними показателями. Стандарты экономии топлива в конечном итоге выше.

Электротурбины вырабатывают электроэнергию по двум различным сценариям.Первый происходит в условиях холостого хода, когда вращающийся узел турбонагнетателя обычно замедляется сам по себе. Второй сценарий более умен. Открывая перепускную заслонку позже или с меньшим отверстием, чем в обычном турбонагнетателе, электрический турбонаддув использует энергию выхлопных газов для одновременного создания наддува для двигателя и выработки электроэнергии. Опять же, это предложение не просто так. Выработка электроэнергии при ускорении увеличивает противодавление выхлопных газов. Но, говорит Кэдл, есть золотая середина, когда энергия, извлекаемая из электронного турбонагнетателя во время этого типа регенерации, выше, чем штраф, уплачиваемый за счет экономии топлива и выбросов CO 2 .

    В двигателях легковых автомобилей электронные турбины еще не полностью зарекомендовали себя как устройства с нулевым потреблением энергии — устройства, которые производят столько же энергии, сколько потребляют. Даже если это не так, они внесут свой вклад в гибридную систему, которая будет обеспечивать большую мощность и лучшую экономию топлива, чем была доступна без них.

    Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на пианино.io

    Electric Turbo, MGU, нагнетатель, турбокомпрессор, компаундер, конструкция двигателя, автоспорт, морской, генератор, E-Turbo, уменьшение размеров двигателя, система турбонаддува, турбонаддув, мотор-генератор, выхлопная турбина, ускорение, запаздывание, крутящий момент, вал, компрессор, Стабильное состояние, давление выхлопа двигателя, зарядные батареи, электронный усилитель, электронное зарядное устройство, возбуждение постоянным магнитом, инерция нижнего ротора, индуктивность обмотки статора, Magnaforce, турбо-компаундирование

    Системы электрического турбонагнетателя и нагнетателя Calnetix Technologies с двигателем Magnaforce ™ Технология генераторов и технология силовой электроники Vericycle ™ помогут вам получить больше мощности и производительности от вашего двигателя в любых условиях эксплуатации с меньшим расходом топлива и низкими выбросами углерода.Ключевые преимущества электрической турбо-системы Calnetix:

    • Оптимальное соотношение воздух / топливо при любых условиях двигателя для повышения производительности

    • Технология уменьшения габаритов двигателя при той же выходной мощности

    • Производство электроэнергии из выхлопных газов двигателя

    • Без турбо лага

    • Повышенная экономия топлива

    • Компактный, компактный размер занимает минимум места, необходимого для систем мотор-генераторов

    • Компактная и высокотемпературная силовая электроника упрощает интеграцию с мотор-генератором (MGU) в моторном отсеке

    • Низкая стоимость интеграции

    • Быстрая окупаемость

    Calnetix имеет множество электрических турбо-систем мощностью от 1 до 1000 л.с., которые используются сегодня в самых разных областях — от легковых автомобилей и автоспорта до морского транспорта.

    Применения турбокомпрессора

    Электрический турбонагнетатель или системы электронного турбонаддува

    Calnetix Technologies позволяют турбонагнетателю работать независимо от условий выхлопа двигателя. Это означает, что производительность компрессора не связана с производительностью выхлопной турбины и, следовательно, может обеспечить необходимое соотношение воздух / топливо для оптимальной производительности двигателя при любых условиях нагрузки, скорости, пуска / останова и разгона.

    Мотор-генератор (MGU) системы электронного турбонаддува может быть автономным блоком, напрямую соединенным с валом турбокомпрессора или интегрированным между компрессором и турбиной для обеспечения оптимальной компактности.При запуске MGU разгоняет турбокомпрессор от низких оборотов холостого хода до максимальной, до 200 000 оборотов в минуту (об / мин), за доли секунды. Это создает необходимое ускорение для устранения турбо-лага и увеличения крутящего момента двигателя для оптимального ускорения автомобиля.

    Когда турбонагнетатель находится в установившемся режиме работы, тот же самый MGU может работать в режиме генератора для выработки электроэнергии из избыточного давления выхлопных газов двигателя. Эту энергию можно использовать для работы вспомогательных систем или зарядки аккумуляторных батарей автомобиля, повышая общую эффективность автомобиля.

    Применение нагнетателя

    Электрический нагнетатель, также известный как электронный ускоритель или электронное зарядное устройство, состоит из высокоскоростного электродвигателя, приводящего в действие компрессор для подачи сжатого воздуха в камеру сгорания двигателя, создавая устойчивый наддув, особенно во время запуска и работы двигателя на низких оборотах. Высокоскоростной двигатель может быть напрямую соединен с компрессором, но чаще всего он устанавливается на одном общем валу. По сравнению с другими технологиями двигателей, технология двигателей Magnaforce ™ с возбуждением постоянными магнитами имеет более низкую инерцию ротора и индуктивность обмотки статора, что приводит к превосходной переходной характеристике.Мотор реагирует мгновенно, и его можно включать и выключать по мере необходимости. Calnetix имеет обширный опыт в оптимизации конструкции двигателя Magnaforce ™ для приложений с нагнетателем, чтобы улучшить интеграцию системы и общую эффективность работы.

    Приложения для компаундеров

    Турбокомпрессор — это автономная система турбины и генератора, которая использует отработанную энергию, выделяемую двигателем напрямую, или в большинстве случаев после турбокомпрессора двигателя для производства электроэнергии.Вырабатываемая дополнительная мощность составляет примерно от 7 до 8 процентов мощности двигателя. Турбо-компаундирование помогает повысить общую топливную эффективность двигателя, обеспечивая при этом привлекательную рентабельность инвестиций (ROI). Высокоэффективный высокоскоростной генератор с прямым приводом от Calnetix хорошо подходит для турбо-компаундирования.

    Конструкция турбокомпрессора Garrett E-Turbo повышает топливную экономичность, ускорение

    Компания Garrett Motion, известный поставщик турбокомпрессоров с 1950 года, стала достоянием общественности со своим E-Turbo, эволюцией турбонагнетателя с электронным управлением.Как объясняет Forbes , установка устанавливает электродвигатель на вал между турбинным колесом и компрессором, что отличается от того, как работают системы турбонаддува с электронным наддувом в автомобилях Mercedes-Benz и Volkswagen Group. Инженеры Garrett сообщили на конференции, что по сравнению со стандартным современным турбонаддувом Garrett они увидели увеличение номинальной мощности на 16% и номинального крутящего момента на 10,5%. Двигатель достиг целевого крутящего момента за одну секунду вместо 1.5 секунд при запуске со скоростью 1500 об / мин, и автомобиль разогнался с 37 миль в час до 62 миль в час за 8,8 секунды вместо 11 секунд. Однако эти инженеры не объяснили, на каком автомобиле или двигателе тестировалась турбина.

    Конкуренты, такие как BorgWarner и Valeo, отмечают такое же общее повышение производительности, как и у Garrett, то есть максимальное повышение топливной эффективности примерно на 10%. Гарретт говорит, что в среднем будет около 2-4%.

    Электронные турбонагнетатели, которые используют Mercedes и Audi, больше похожи на электрические нагнетатели, чем на турбокомпрессоры. Они подают дополнительный воздух во время движения на низких оборотах, раскручивая компрессор до 70 000 об / мин всего за 250 миллисекунд.Электроусилитель обеспечивает низкую мощность, в то время как турбины стандартного размера с выхлопным приводом на таких автомобилях, как Audi RS5 с дизельным двигателем или Mercedes CLS 53, двойные турбины Audi SQ7 или первая из пары последовательные турбины, катушка принимает на себя нагрузку. Это отдельные компоненты в моторном отсеке — BorgWarner утверждает, что их система размером с дыню — работает от 48-вольтовой системы.

    Garrett заявляет о нескольких преимуществах, размещая электродвигатель на валу внутри турбонагнетателя с приводом от выхлопа.Как и в других системах электронного наддува, электродвигатель раскручивает компрессор до тех пор, пока выхлопные газы не догонят и не начнут приводить в действие турбину; наличие единственного блока упрощает установку сантехники турбонагнетателя. Возможно, самым сильным преимуществом является то, что турбонагнетатель может собирать энергию при выходе из наддува, поскольку все еще вращающаяся турбина превращается в генератор, пополняющий запасы батареи.

    Гаррет не скажет, какой автопроизводитель первым получит надстройку производительности, но первым вариантом использования будет высокопроизводительный автомобиль в 2021 году.После этого компания заявляет, что у нее есть 10 активных программ развития в различных сегментах трех крупнейших мировых автомобильных рынков.

    Mercedes-AMG представил новый электрический турбокомпрессор tech

    Подразделение Mercedes-Benz AMG Performance подробно описало новую систему турбонаддува для выхлопных газов с электроприводом, которая появится на его моделях следующего поколения.

    Предполагается, что на основе технологии, первоначально разработанной подразделением AMG High Performance Powertrain для двигателя Mercedes Формулы 1, планируется заменить турбонагнетатели, работающие на выхлопных газах, которые в настоящее время использует AMG на обоих его двигателях.0-литровый четырехцилиндровый и 4,0-литровый двигатели V8.

    Новый турбонагнетатель, который описывается как находящийся на завершающей стадии разработки, был разработан и спроектирован в сотрудничестве с Garrett Motion и, как утверждается, отличается от турбонагнетателя отработавших газов с электроприводом, который используется на 3,0-литровом шестицилиндровом двигателе AMG. 53 модели.

    В новой системе используется компактный электродвигатель, встроенный на валу турбонагнетателя, между колесом компрессора на стороне свежего воздуха и колесом турбины на стороне выпуска, для увеличения индукции.Двигатель, который управляется через электрическую систему 48 В, используется для привода крыльчатки компрессора до введения потока выхлопных газов в процессе, направленном на устранение турбо-лага.

    Mercedes-AMG заявляет, что его новый турбокомпрессор может работать со скоростью до 170 000 об / мин, обеспечивая при этом гораздо более высокую скорость воздушного потока. Новый турбомотор, электродвигатель и система силовой электроники подключены к охлаждающему контуру двигателя внутреннего сгорания.

    «Мы четко определили наши цели для электрифицированного будущего», — сказал уходящий председатель AMG Тобиас Моерс.«Этим шагом мы стратегически дополняем нашу модульную технологию и адаптируем ее к нашим требованиям к производительности. На первом этапе это включает в себя электрифицированный турбонагнетатель — пример переноса технологии Формулы 1 на дороги, с помощью которого мы выведите двигатели внутреннего сгорания с турбонаддувом на ранее недостижимый уровень ».

    Хотя компания Mercedes-AMG еще не представила дополнительной технической информации о новой системе, новая система турбонаддува с электрическим усилителем выхлопных газов «значительно улучшает реакцию на холостой ход, а также во всем диапазоне оборотов двигателя».Кроме того, он утверждает, что новый турбонагнетатель «обеспечивает более высокий крутящий момент при более низких оборотах двигателя», что приводит к «оптимальному ускорению с места и повышенной маневренности».

    ПОДРОБНЕЕ

    Под кожей: почему все большее распространение получают электрические нагнетатели

    Под кожей: зачем современным автомобилям электрические системы на 48 В

    Aston Martin назначил главу Mercedes-AMG новым начальником

    Turbocharger Integrated Assist

    Turbocharger Integrated Assist

    Hannu Jääskeläinen

    Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием.Для полного доступа требуется подписка DieselNet.
    Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

    Abstract : Один из способов помочь турбокомпрессору — это встроить двигатель в сам турбонагнетатель. При помощи встроенного в турбонагнетатель вспомогательного оборудования дополнительная мощность подается непосредственно на вал турбонагнетателя от электрического или гидравлического двигателя или даже от самого двигателя через зубчатую передачу или трансмиссионное устройство.

    Введение

    Один из способов помочь турбокомпрессору — встроить двигатель непосредственно в турбокомпрессор.На рисунке 3 показан пример, в котором электродвигатель встроен в турбокомпрессор. Гидравлические турбины (Рис. 11) или насосы, а также прямое механическое соединение с коленчатым валом двигателя через трансмиссию (Рис. 9) — это другие возможности для обеспечения интегрированной поддержки турбонагнетателя.

    Интеграция вспомогательной функции в турбонагнетатель имеет определенные преимущества, включая компактную и гибкую упаковку, а в некоторых случаях возможность включения утилизации отходящего тепла в виде турбонагнетателя с использованием аппаратного обеспечения, общего для вспомогательной функции.В дополнение к аспектам рекуперации энергии турбонагнетателя, можно управлять турбонагнетателем как с вспомогательной, так и с турбонагнетательной функциями, чтобы иметь меньшее изменение скорости во всем рабочем диапазоне двигателя. Это позволяет установить лопатки в компрессор и турбину для повышения эффективности. Лопатки ограничивают диапазон скоростей турбокомпрессора и обычно не используются в обычных конструкциях [2362] .

    Включение функции помощи в турбокомпрессор сопряжено с определенными проблемами.Одна очень важная проблема заключается в том, что диапазон расхода компрессора должен быть расширен, особенно в конце диапазона низкого расхода, чтобы обеспечить воздух, необходимый для увеличения крутящего момента двигателя на низких оборотах. Если максимальный расход воздуха на высокой скорости остается неизменным для поддержания мощности двигателя, в большинстве случаев линия помпажа компрессора должна двигаться дальше влево, чтобы обеспечить необходимое увеличение потока воздуха на низких оборотах двигателя и давления наддува, рис. 1 [2357] . Для достижения этой расширенной карты компрессоров стандартных методов расширения ширины карты (MWE) может быть недостаточно, и могут потребоваться компрессоры с переменной геометрией (VGC) [2360] [2361] .В качестве альтернативы, отдельный компрессор, такой как нагнетатель, может использоваться для дополнения турбонагнетателя [3299] .

    Рисунок 1 . Эффект увеличения степени сжатия компрессора и диапазона расхода

    1: Повышение предела помпажа. 2: Повышение мощности зарядки. 3: Повышение степени сжатия и скорости вращения.

    Встроенный ассистент турбонагнетателя также может отрицательно сказаться на эффективности турбины, когда функция помощи активна.Турбины спроектированы таким образом, чтобы работать в максимально широком рабочем диапазоне. В условиях, когда на турбонагнетатель подается дополнительная мощность, скорость вала турбонагнетателя увеличивается и может привести к несоответствию между потоком выхлопных газов и геометрией турбины, что может снизить КПД турбины, как показано на рисунке 2. Аэродинамическая оптимизация турбинного колеса или турбины с изменяемой геометрией может требуется, если требуется максимизация мощности турбины (и, таким образом, минимизация дополнительной мощности) во время периодов поддержки турбокомпрессора [2361] .

    Рисунок 2 . Влияние дополнительного источника питания на турбокомпрессор на КПД турбины

    Еще одна проблема, связанная с интегрированной вспомогательной системой турбонагнетателя, заключается в том, что двигатель, обеспечивающий вспомогательную функцию, должен выдерживать максимальную скорость вращения турбонагнетателя, даже если это необходимо только на низких и средних частотах вращения турбонагнетателя.

    ###

    Мягкая гибридизация за счет электрификации воздушной системы: влияние турбонаддува с электроприводом и изменяемой геометрией на внедорожный дизельный двигатель | Дж.Англ. Gas Turbines Power

    Поддержка электрического турбонагнетателя заключается во включении электродвигателя / генератора в корпус подшипника турбокомпрессора для образования мягкой гибридной системы без изменения других механических частей двигателя. Это делает его идеальным и экономичным решением в краткосрочной и среднесрочной перспективе для сокращения выбросов CO 2 . Целью статьи является оценка улучшений в энергоэффективности двигателя и переходных характеристиках, связанных с гибридизацией воздушной системы.Для достижения этой цели турбокомпрессор с электроприводом и турбиной с изменяемой геометрией сравнивали с аналогичной, не гибридной системой при ступенчатых изменениях нагрузки двигателя. Турбина с изменяемой геометрией контролируется для обеспечения различных уровней начального наддува, в том числе оптимизированного для эффективности, и для изменения ее пропускной способности во время переходного процесса. Модель представляет собой 7-литровый 6-цилиндровый дизельный двигатель с выходной мощностью более 200 кВт и мощностью электроусилителя турбонагнетателя менее 10 кВт.Чтобы повысить точность модели, турбина турбонагнетателя была экспериментально охарактеризована с помощью уникального испытательного центра, доступного в Имперском колледже, и данные были экстраполированы с помощью модели средней линии турбины. Оптимизация наддува двигателя для минимизации насосных потерь показала снижение удельного расхода топлива на тормоза до 4,2%. Применяя помощь электрического турбонагнетателя, можно было восстановить потери в переходной характеристике двигателя системы с оптимизированным КПД, так как это приводит к снижению падения частоты вращения двигателя на 71–86% и на 79–94% частоты вращения двигателя. время восстановления.Когда в турбонагнетателе присутствует электрический усилитель, приведение в действие лопаток турбины для облегчения переходных процессов не дало желаемого результата, а только снизило энергоэффективность. Если турбина с изменяемой геометрией открывается во время переходных процессов, достигается повышение удельной энергоэффективности с незначительным снижением переходных характеристик двигателя.

    Внедрение систем полного электрического турбонаддува на бензиновых двигателях с большим наддувом — исследовательский портал Университета Бата

    TY — GEN

    T1 — Внедрение систем полного электрического турбонаддува на бензиновых двигателях с высоким наддувом

    AU — Zhang, Q.

    AU — Lu, P.

    AU — Dimitriou, P.

    AU — Akehurst, S.

    AU — Copeland, Colin

    AU — Zangeneh, M.

    AU — Richards, B.

    AU — Фаулер, G.

    N1 — Документ № GT2017-64960

    PY — 2017

    Y1 — 2017

    N2 — Чтобы обеспечить крайне сложный предел изменения климата в 2 ° C, ожидается, что автомобильный сектор продолжит улучшать КПД двигателей внутреннего сгорания. За последнее десятилетие уменьшение габаритов двигателей внутреннего сгорания за счет турбонаддува стало одним из основных решений, предложенных отраслью для выполнения своих обязательств по выбросам углерода.Хотя различные новые технологии турбонаддува изменили медлительный образ обычных двигателей с турбонаддувом, система турбонагнетателя далека от совершенства. С точки зрения потока энергии двигателя, большое количество ненужной энергии обычно собирается турбиной с низким КПД, впоследствии мощность турбины, передаваемая на компрессор, используется исключительно для зарядки двигателя. Когда эта мощность для зарядки является чрезмерной для заданных условий работы двигателя, она либо расходуется за счет дросселирования, либо напрямую выводится через перепускной клапан, как чистая потеря энтальпии.Чтобы более эффективно использовать ненужную энергию без ухудшения других рабочих параметров двигателя, Aeristech Ltd. предлагает технологию полного электрического турбонаддува. Система состоит из электрического турбогенератора и электрического компрессора, соединенных только через электрическую систему. Без ограничения механического турбонагнетателя компрессор и турбина могут работать с разными скоростями. Компрессор с электрическим приводом может свободно плавать, когда наддув не требуется, а двигатель может быстро обеспечить наддув только тогда, когда требуется более высокая нагрузка.Между тем, электрическая турбина может управляться генератором для работы на любой установленной скорости, что обеспечивает максимальную эффективность сбора энергии. В этой статье представлено моделирование способности независимой системы электронного турбонаддува заряжать 2-литровый бензиновый двигатель с большим наддувом. Одноступенчатая конфигурация электронного турбонагнетателя и конфигурация электронного турбонагнетателя плюс механический турбонагнетатель были оценены и сравнены. Результаты моделирования показали, что двухступенчатая система электронного турбонаддува может снизить выбросы CO2 примерно на 1 процент в различных ездовых циклах по сравнению с обычным турбонагнетателем с перепускным клапаном, и выгода будет намного выше для будущего реального ездового цикла.Одноступенчатая конфигурация оказалась непрактичной в том смысле, что уровень мощности турбогенератора не только ограничит выходную мощность двигателя, но также окажет негативное влияние на конструкцию системы, охлаждение и предполагаемую стоимость. Между тем, двухступенчатая конфигурация, в которой eCompressor действует как дополнительное повышающее устройство на нижнем уровне, а переходное устройство, оказалась лучшим решением с общим преимуществом в управляемом уровне мощности, эффективности системы, переходной характеристике и предполагаемой стоимости.

    AB — Ожидается, что для обеспечения крайне жесткого ограничения изменения климата на 2 ° C автомобильный сектор и дальше повысит эффективность двигателей внутреннего сгорания.За последнее десятилетие уменьшение габаритов двигателей внутреннего сгорания за счет турбонаддува стало одним из основных решений, предложенных отраслью для выполнения своих обязательств по выбросам углерода. Хотя различные новые технологии турбонаддува изменили медлительный образ обычных двигателей с турбонаддувом, система турбонагнетателя далека от совершенства. С точки зрения потока энергии двигателя, большое количество ненужной энергии обычно собирается турбиной с низким КПД, впоследствии мощность турбины, передаваемая на компрессор, используется исключительно для зарядки двигателя.Когда эта мощность для зарядки является чрезмерной для заданных условий работы двигателя, она либо расходуется за счет дросселирования, либо напрямую выводится через перепускной клапан, как чистая потеря энтальпии. Чтобы более эффективно использовать ненужную энергию без ухудшения других рабочих параметров двигателя, Aeristech Ltd. предлагает технологию полного электрического турбонаддува. Система состоит из электрического турбогенератора и электрического компрессора, соединенных только через электрическую систему. Без ограничения механического турбонагнетателя компрессор и турбина могут работать с разными скоростями.Компрессор с электрическим приводом может свободно плавать, когда наддув не требуется, а двигатель может быстро обеспечить наддув только тогда, когда требуется более высокая нагрузка. Между тем, электрическая турбина может управляться генератором для работы на любой установленной скорости, что обеспечивает максимальную эффективность сбора энергии.

    Leave a Reply

    Your email address will not be published.Required fields are marked *

    *