Двигатель 21124 ВАЗ 16-клапанный инжекторный, 1,6л.
Описание
Двигатель 21124 – мощность и динамика
Разработан двигатель ВАЗ 124 на базе ранее разработанного агрегата для модели 2112. К главным требованиям, предъявленным к новому узлу, относится увеличение показателя безопасности конструкции ШПГ, а также повысить текущий объем камер сгорания. Инженеры завода-производителя предусмотрели новые, более глубокие лунки, которые не препятствуют работоспособности клапанных механизмов в случае, когда имеет место разрыв привода газораспределительного механизма. Параллельно с этим, 124 движок имеет и несколько увеличенные показатели высоты цилиндров, а также ходя поршня.
Технические характеристики узла
Увеличение мощности оборудования не ставилось первоочередной задачей, важнее было повысить текущий стандарт экологии, исключить возможные неисправности узлов и систем. Схема компоновки оборудования остается неизменной. Следует выделить следующие характеристики:
— ДВС выполнен 16 клапанным.
— На заводе в сравнении с базовой конфигурацией был увеличен объем двигателя ваз 21124, который теперь составил 1,6 литра. Мощность при этом 89,1 лошадиных сил, в то время как крутящий момент несколько понизился, теперь он составляет 131 оборот за минуту.
— Производители успешно выполнили поставленную задачу, стандарт повысился до уровня «Евро-4», что вывело транспортное средство на один уровень со многими иностранными разработками.
— Диаметр цилиндров имеет размер 82 миллиметра.
— Отдельные корректировки коснулись конструктивного исполнения верхних распределительных валов, новой стала и ременная передача ГРМ.
Устанавливается мотор на транспортные средства Приора, ВАЗ 2112, 2011, 2010 и четырнадцатую модель из серии LADA Samara.
Конструктивные особенности
Новый агрегат предусматривает сочетание типовых решений производителя АвтоВАЗ, инновационных решений:
— Предусмотрена большая высота цилиндрового блока, теперь этот показатель установлен на уровне 197,1 миллиметра.
— Проработаны новые резьбовые отверстия, в соответствии со стандартизацией они носят маркировку М10.
— Изменения коснулись способа монтажа масляных форсунок, используемых для охлаждения поршневых узлов.
— Инженеры использовали проверенный коленчатый вал от модификации 11183. Благодаря этому, можно купить двигатель ВАЗ 21124 16 клапанов частично унифицированный, можно выполнить частичную замену элементов, подобрав из каталога детали других моделей автомобилей АвтоВАЗ.
Решаетесь купить двигатель 21124?
Достоинства и недостатки
Рекомендуем обратить внимание на преимущества, недостатки оборудования. К недостаткам относится наличие помпы в конструкции. Она отличается малым ресурсом работы. Понизились показатели мощности и крутящего момента.
Преимуществ решения купить мотор ВАЗ 124 много. В первую очередь это работоспособность клапана, который теперь «не гнет». Соблюдение нового стандартна экологии позволило гарантировать комфортную езду и безопасность.
Агрегат предлагается от совместного производства интернет-магазина «ДЕТАЛЬ-ПАРТНЁР» в сборе и без навесного оборудования. Цена вопроса сравнительно невысокая, что порадует владельцев данной модели транспортного средства. В компании вы сможете воспользоваться поддержкой квалифицированных сотрудников, которые смогут ответить на все вопросы, связанные с покупкой и доставкой.
Электросхема ВАЗ-2112 инжектор 16 клапанов с описанием: фото
Здесь приводятся схемы управления двигателями ВАЗ-21120 и 21124. Они устанавливались на хэтчбеки «Лада» семейства 2112. Приводится и схема бортовой сети. Речь идёт о двигателях, содержащих 16 клапанов, и электросхема на ВАЗ-2112 состоит из отдельных частей: управление двигателем, общая схема. Цепь питания фар, габаритов и т.д. рассматривается в первой главе.
Изучаем по видео, как включить самодиагностику панели приборов для проверки её работы.
Схема электропроводки ВАЗ-2112
Схема проводки авто в кузове «хэтчбек» (для увеличения нажмите на картинку)
Обозначения: 1 – Блок-фара, 2 – Клаксон, 3 – Вентилятор основного радиатора, 4 – Стартер, 5 – АКБ, 6 – Генератор, 7 – Концевик КПП (задний ход), 8 – Актуатор в двери переднего пассажира, 9 – Реле разрешения работы стеклоподъёмников, 10 – Реле стартера, 11 – Вентилятор отопителя, 12 – Электропривод перегородки отопителя, 13 – Помпа основная, 14 – Датчик бачка омывателя, 15 – Актуатор в двери водителя, 16 – Селектор стеклоподъёмника переднего пассажира, 17 – Кнопка отпирания пятой двери, 18 – Блок сопротивлений вентилятора отопителя, 19 – Мотор основного стеклоочистителя, 20 – Селектор стеклоподъёмника водителя, 21 – Мотор стеклоподъёмника переднего пассажира, 22 – Центральный замок, 23 – Переключатель наружного света, 24 – Датчик утечки тормозной жидкости, 25 – Помпа дополнительная, 26 – Мотор стеклоподъёмника водителя, 27 – Индикатор включения ПТФ, 28 – Выключатель ПТФ, 29 – Приборная панель, 30 – Индикатор включения обогрева стекла, 31 – Выключатель обогрева стекла, 32 – Подрулевой селектор-переключатель, 33 – Реле ПТФ, 34 – Замок зажигания, 35 – Главный блок предохранителей, 36 – Подсветка регуляторов отопителя, 37 – Кнопка аварийной сигнализации, 38 – Контроллер управления отопителем, 39 – Освещение бардачка, 40 – Концевик крышки бардачка, 41 – Прикуриватель, 42 – БСК – блок индикации, 43 – Подсветка пепельницы, 44 – Розетка 12V, 45 – Выключатель подсветки приборов, 46 – Актуатор в правой задней двери, 47 – Селектор стеклоподъёмника правого заднего пассажира, 48 – Часы, 49 – Мотор стеклоподъёмника правого заднего пассажира, 50 – Концевик тормоза (замкнуто – педаль нажата), 51 – Мотор стеклоподъёмника левого заднего пассажира, 52 – Селектор стеклоподъёмника левого заднего пассажира, 53 – Актуатор в левой задней двери, 54 – Поворотник, 55 – Концевик ручного тормоза (замкнуто – ручник включён), 56 – Мотор заднего стеклоочистителя, 57 – Светильник штурмана, 58 – Плафон салона, 59 – Датчик температуры в отопителе, 60 – Концевик открытой передней двери, 61 – Концевик открытой задней двери, 62 – Освещение багажника, 63 – Задняя оптика (на кузове), 64 – Задняя оптика (на пятой двери), 65 – Подсветка номерного знака.
Буквами обозначены клеммы, к которым подключается: А – Динамик передний справа, Б – Магнитола, В – Жгут форсунок, Г – Диагностический разъём ЭУР, Д – Динамик передний слева, Е – Диагностический разъём контроллера отопителя, Ж – Динамик задний справа, З – Динамик задний слева, И – Разъём БК, К – Нить обогревателя стекла, Л – Актуатор пятой двери, М – Добавочный стоп-сигнал.
Все концевики дверей при закрытых дверях остаются разомкнутыми. Мы приводим электросхему на ВАЗ-2112 с описанием, а сведения о концевиках будут полезны установщикам сигналок.
Заметьте, что питание стартера может подключаться по-разному. Либо ток на клемму 50 поступает напрямую с замка, либо через реле 10. Второй вариант (как на схеме) встречается реже.
Три реле, показанные на схеме, всегда установлены на колодке, закреплённой на блоке 35 сверху (см. фото).
Главный блок предохранителей и реле
Здесь деталь 5 – это «реле 9», а 7 – «реле 10».
Стеклоподъёмники
Когда зажигание включено, реле 11 замыкает контакты. Тем самым разрешается работа стеклоподъёмников, управляемых селекторами 3, 4, 9 и 10.
Без зажигания стеклоподъёмники не работают
Других пояснений схема не требует.
Центральный замок
На схеме показаны четыре актуатора, а также управляющий блок 3. Актуатор 7 находится в водительской двери.
Актуаторы, блок ЦЗ и один концевик
Казалось бы, тут всё просто. Но в описании на электросхему ВАЗ-2112 обычно не сообщают главного: белый шнур – это вход для команды «Открыть», коричневый – «Закрыть».
Существует вариант схемы, где в модуле 7 размещён только концевик (без актуатора).
Фары
Реле K4 включает лампы ближнего света, K5 – дальнего.
Блок-фары с однонитевыми лампами
Подрулевой селектор 3 включает только реле K5. Но в пояснении к электросхеме на ВАЗ-2112 сказано, что:
- Селектор 3 служит для выбора режима «ближний/дальний»;
- С его же помощью кратковременно включают лампы дальнего света.
Всё просто: когда переключатель 4 находится в положении II, реле K4 замыкает свои контакты. И значит, в режиме «дальний свет» работают все лампы сразу.
Габариты, стоп-сигнал, подсветка
Габаритные огни 1 и 6 включаются переключателем 3. С него ток идёт через главный блок 2, а точнее, через реле исправности ламп. На схеме вместо реле K1 показаны перемычки.
Габариты, подсветка номера, стоп-сигнал, подсветка приборов
Освещение номерного знака – это лампы 8. Они включаются вне зависимости от срабатывания реле. Работа ламп заднего хода тоже не зависит от реле K1, так же, как и от выключателя 3. Она регулируется только концевиком 10. Похожим образом включаются и лампы стоп-сигнала (концевик 11).
Яркость подсветки приборов регулируется резистором 9. Но есть нюанс: выключатель 3 должен находиться в положении I или II. Этим положениям соответствует включение индикатора 5 (на приборке).
Поворотники
Лампы сигналов поворота 1, 5 и 6 задействуются переключателем 7. В цепь питания этих ламп включено реле-прерыватель K3, попеременно замыкающее контакты 49а-49 и 49а-31.
Основа схемы – реле-прерыватель
Без подачи тока с замка зажигания поворотники не работают. Существует и режим работы «Аварийная сигнализация», когда:
- Выключатель 4 находится в верхнем положении;
- Ток поступает не с замка зажигания, а с клеммы 3 разъёма Ш4.
В режиме аварийки мигают шесть ламп сразу (обе стороны).
При нарушении контакта в патроне одной из ламп частота срабатывания реле K3 удваивается. В нормальном состоянии она равна 1,2-1,9 Гц.
Схема зажигания и системы управления двигателем
Приводим схемы управления для следующих ДВС:
Мотор | 21120 (Евро-2) | 21124 (Евро-2) | 21124 (Евро-3) |
---|---|---|---|
Форсунки | 1 | 2 | 2 |
Катушка зажигания | — | 1 | 1 |
Свечи | 2 | — | — |
Модуль зажигания | 3 | — | — |
Разъём диагностики | 4 | Б | Б |
ЭБУ | 5 | 3 | 3 |
Отводы на приборку | 6 | Е | Е |
Реле зажигания (6) | 7 | 4 | 4 |
Предохранитель цепей зажигания (1) | 8 | 5 | 5 |
Реле вентилятора (4) | 9 | 6 | 6 |
Предохранитель вентилятора (2) | 10 | 7 | 7 |
Реле бензонасоса (5) | 11 | 8 | 8 |
Предохранитель бензонасоса (3) | 12 | 9 | 9 |
ДМРВ | 13 | 10 | 10 |
Датчик неровной дороги | — | — | 11 |
ДПДЗ | 14 | 11 | 12 |
ДТОЖ | 15 | 12 | 13 |
РХХ | 16 | 17 | 14 |
Лямбда-зонд основной | 17 | 14 | 15 |
Лямбда-зонд дополнительный | — | — | 16 |
Датчик детонации | 18 | 15 | 18 |
ДПКВ | 19 | 16 | 19 |
Клапан продувки адсорбера | 20 | 13 | 17 |
Блок АПС | 21 | 18 | 20 |
Индикатор АПС | 22 | 19 | 21 |
Датчик скорости | 23 | 21 | 23 |
Бензонасос + датчик уровня | 24 | 22 | 24 |
Датчик давления масла | 25 | 23 | 25 |
Датчик термометра тосола | 26 | 24 | 26 |
Датчик уровня масла | 27 | — | — |
Датчик фаз | 28 | 20 | 22 |
Разъём ABS | A | А | А |
Разъём кондиционера | B | В | В |
Разъём вентилятора | C | — | — |
Подсветка замка зажигания (к бело-голубому проводу) | D+E | — | — |
Отводы к жгуту дверей | — | Д | Д |
+АКБ | F | Г | Г |
Масса | G1+G2 | G1+G2 | G1+G2 |
В скобках указаны элементы, установленные в дополнительный монтажный блок.
Монтажный блок с правой стороны под торпедо
Советы по монтажу на видео
Ремонт nissan presage Бензогенераторы lifan 188
Ремонт nissan presage Бензогенераторы lifan 188
Купить bmw e30 седан, Бензогенераторы lifan 188
магазин дешевых ключей стим Машины kia производитель Ремонт nissan presageМеня очень сильно расстроила прошлая автомобильная мастерская – после покраски прошел месяц, а весь пигмент облез и потрескался. Поэтому я и выбрал «АвтосервисПрофи», некоторые знакомые туда уже заезжали. Приятно был удивлен низким уровнем цен – до этого отдавал в 1,5-2 раза больше. Сделали новый, хороший бампер и капот отреставрировали. Mercedes e-Класс 1985 sexy girls
Ремонт nissan presage Вопросы-ответыДиректор автошколы Тема Вопросы: (6)* Вам нужен срочный кредит? Мы предлагаем все виды.
..Здравствуйте, подскажите, у меня есть права категории В....подскажите будут ли какието изменения в 2015г по срокам...Всего консультантов: Бензогенераторы lifan 188
Восстановление кузова машины позволит улучшить ходовые характеристики, сделав ее более управляемой и снизив износ резины. Управление станет безопаснее и экономичнее из-за снижения топливного расхода. Налог hover great wall
Citroen c4 2012 капот Бампер-Химки это разборка кузовных запчастей на любые автомобили. В продаже новые и б/у кузовные запчасти на автомобили в Химках и Московской области. В продаже на разборке бампера, капоты, крылья, двери, крышки багажника, фары и оптика. Мы даём гарантию на наши автозапчасти. Для того, чтобы купить недорого кузовные запчасти с разбора, оставляйте заявку на портале Peugeot 301 книга скачать Suzuki автосалоны сургут
Ремонт nissan presage
Сварку делают при наличии пробоев, коррозии, ржавчины. А для пластиковых бамперов используют пайку.Процедуру проводят в отдельном боксе с помощью специального оборудования. Peugeot 301 книга скачать
Существует множество причин, по которым владелец захотел или был вынужден обновить цвет своего железного коня. Но начнем с того, что бывает два вида покрасочных работ: полная окраска и локальная, и причины для использования той или иной разные. Suzuki автосалоны сургут nude girls
Налог hover great wall Естественный износ, под определением которого понимаются всевозможные сколы, потертости и царапины, появляющиеся из-за воздействия на кузов автомобиля реагентов, камней, песка и воды. Даже такие незначительные повреждения способны разрастись до крупных очагов коррозии, появление которых важно не допустить.
В Орле этот магазин очень популярен, и составляет не малую конкуренцию экзисту, так как запчасти намного дешевле и есть возможность найти поставщика с ...
Mercedes e-Класс 1985 Штампованные колесные диски приемлемы как по цене, так и по качеству. Они дешевые, надежные, прочные, пластичные (не трескаются при ударе), но весьма тяжелые и имеют менее привлекательный дизайн.
В отличие от них, легкосплавные литые диски значительно снижают нагрузку на ходовую часть автомобиля, обеспечивают лучшее охлаждение тормозного узла и имеют современный стильный облик. А если вы желаете получить максимальное качество, то рекомендуем купить кованые автодиски. Легкость, исключительная прочность и жесткость конструкции, способность выдерживать сильнейшие удары без образования трещин. Машины kia производитель
Бензогенераторы lifan 188
Автосервис осуществляет все виды ремонта иномарок, техническое обслуживание, компьютерную диагностику автомобиля, кузовной ремонт, слесарные работы, 3D сход-развал, ремонт ходовой, услуги автоэлектрика. Профессионализм и опыт мастеров автосервиса позволяют справляться с поломками, независимо от сложности, качественно и за адекватную цену. Ремонт nissan presageПолная компьютерная диагностика двигателя, подвески, ходовой части. Ремонт любой сложности отечественных и импортных автомобилей.
Шиномонтаж, развал схождение, накачка шин азотом. Установка сигнализаций, автозвука, систем автозапуска и другого электрооборудования. Кузовной ремонт, покраска автомобилей. Автомойка, химчистка салона. Юридическая компания
Chevrolet lanos продажа От всей души хочу выразить огромную благодарность специалистам фирмы, я проходила у вас ТО и была в восторге от вашей грамотной,оперативной, качественной работы сделанно всё за 1 час и за минимальные деньги. СПАСИБО я восхищаюсь вашими ЗОЛОТЫМИ РУКАМИ.УСПЕХОВ В РАБОТЕ!!!
Купить bmw e30 седан Для ремонта иномарок или прохождения ими регламентного ТО, возможно использование оригинальных и неоригинальных запчастей и рем комплектов, стоимость которых значительно ниже, чем стоимость оригинальных деталей. При этом, качество неоригинальных деталей от известных производителей могут быть не хуже чем, оригинала.
Переделка рычагов bmw e39 watch dogs legion steam Bmw x6 наличие купить
Citroen c4 2012 капот
О таком дорожном покрытии мы можем только немножко помечтать.Что самое интересное, в Японии практически вся автомобильная техника предназначена для езды по плохим дорогам. Тюнинг фото тойота прадо
Лучше обращаться в профессиональные автоцентры, которые обладают необходимым помещением и всем нужным инструментом. В нашей компании предоставят все условия, чтобы специалисты качественно покрасили автомобиль клиента. смотреть фильм
Электросхемы kia carens Другая ситуация наблюдается, когда в результате сильного повреждения произошло изменение расстояния между точками фиксации узлов авто. В этом случае потребуется полное восстановление геометрии кузова автомобиля. Если же повреждения носят преимущественно локальный характер, то для проведения ремонта своими руками достаточно использовать ручной инструмент. Восстановление геометрических особенностей авто требует наличия специнструмента и участия квалифицированных специалистов. Citroen c4 2012 капот
Наши тесты volvo xc70 видео В комплекс работ по входит поддержание и восстановление работоспособности и исправности всего авто.
Но при этом не стоит забывать и о внешнем виде машины, для этого и существует дополнительная наша услуга - покраска авто в Самаре, она поможет вам придать блеск, новизну и стиль вашему средству передвижения. Также вы можете обращаться к нам и в том случае, если Вам необходимо пройти просто профилактический осмотр автомобиля. Chevrolet orlando авто ру
Подготовительные работы. На этом этапе осуществляется уборка авто, проводится зачистка поверхности от коррозии и мелких механических повреждений, наносится антикоррозийное вещество. После этого поверхность обезжиривают, наклеиваются специальные материалы для шпатлевания и грунтования. Обзор lada racing club
Suzuki автосалоны сургут
Мастерские по ремонту бытовой техники встречаются на каждом шагу. Интернет изобилует объявлениями сервисных центров и частных мастеров. Достаточно вбить в поиске фразу «бытовая техника ремонт» или «сервисный центр бытовая техника ремонт», чтобы увидеть огромное количество объявлений по ремонту.можно заказать и по телефонам из газет, однако, не все специалисты предоставляют гарантии на свои услуги по ремонту бытовой техники, запчасти не всегда оригинальные, а уровень профессионализма мастера и вовсе может быть минимальным. Фото тюнинг авто до и после
Подходить к этому вопросу стоит так же ответственно и внимательно, как, например, к выбору медицинских услуг. Ведь от «здоровья» авто зачастую зависит безопасность, комфорт и здоровье его хозяина. sexy girls
Тюнинг спойлер на прадо За годы работы нам удалось добиться восстановления прозрачности стекла на 80%, полимеры, которые мы используем имеют сходный со стеклом коэффициент преломления света, поэтому трещины любой длины и сколы до 3-х сантиметров будут практически не заметны.
Новые модели hyundai 2016 Такой подход поддерживают многие не добросовестные мастера, когда нет возможности точно подобрать цвет краски или качественно выполнить локальный ремонт кузова автомобиля. Проблемы с оборудованием, когда "покраска в переход" не возможна по причинам низкого уровня подготовки мастеров или некачественного оборудования, экономии сервиса на подборе краски и прочее.
Chevrolet aveo t255 размер Тюнинг авто своими рука
Компания ИП Сергей Ремонт иномарок из Москвы предлагает клиентам товары и услуги в 8 сферах, в том числе Автосервисы и автотехцентры, Ремонт бензиновых двигателей, Ремонт автоэлектрики. Тюнинг авто своими рука Chevrolet aveo t255 размер
usariarigan
Все о клапанах двигателя
Изображение предоставлено: Максим Вивцарук / Shutterstock.com
Клапаны двигателя — это механические компоненты, используемые в двигателях внутреннего сгорания для обеспечения или ограничения потока жидкости или газа в камеры сгорания или цилиндры и из них во время работы двигателя. Функционально они работают аналогично многим другим типам клапанов в том, что они блокируют или пропускают поток, однако они представляют собой чисто механическое устройство, которое взаимодействует с другими компонентами двигателя, такими как коромысла, для открытия и закрытия в правильной последовательности и с правильный выбор времени.
Термин «клапан двигателя» может также относиться к типу обратного клапана, который используется для впрыска воздуха в составе систем контроля выбросов и рециркуляции выхлопных газов в транспортных средствах. Этот тип клапана двигателя не рассматривается в этой статье.
Клапаны двигателей являются общими для многих типов двигателей внутреннего сгорания, независимо от того, работают ли они на таком топливе, как бензин, дизельное топливо, керосин, природный газ (СПГ) или пропан (LP). Типы двигателей различаются количеством цилиндров, которые представляют собой камеры сгорания, вырабатывающие энергию от воспламенения топлива.Они также различаются типом работы (2-тактный или 4-тактный) и конструктивным размещением клапанов внутри двигателя [верхний клапан (OHV), верхний кулачок (OHC) или клапан в блоке (VIB)]. .
В этой статье кратко описывается работа клапанов двигателя в типичных двигателях внутреннего сгорания, а также представлена информация о типах клапанов, их конструкции и материалах. Дополнительную информацию о других типах клапанов можно найти в нашем соответствующем руководстве «Общие сведения о клапанах».
Номенклатура клапанов двигателя
Большинство клапанов двигателя спроектированы как тарельчатые клапаны из-за их толкающего движения вверх и вниз и имеют головку клапана конического профиля, которая прилегает к механически обработанному седлу клапана, чтобы перекрыть проход жидкостей или газов. Их также называют грибовидными клапанами из-за характерной формы головки клапана. На рисунке 1 показана номенклатура различных элементов типичного клапана двигателя.
Рисунок 1 — Номенклатура стандартного тарельчатого клапана двигателя.
Изображение предоставлено: https://dieselnet.com
Двумя основными элементами являются шток клапана и головка клапана. Головка содержит галтель, ведущий к поверхности седла, которая обрабатывается под определенным углом, чтобы соответствовать механической обработке седла клапана, с которым она будет соответствовать. Посадка поверхности клапана на седло клапана — это то, что обеспечивает уплотнение клапана против давления сгорания.
Шток клапана соединяет клапан с механическими элементами в двигателе, которые приводят в действие клапан, создавая силу для перемещения штока против давления в седле, создаваемого пружиной клапана.Стопорная канавка используется для удержания пружины в нужном положении, а кончик штока клапана многократно контактирует с коромыслом, толкателем или толкателем, приводящим в действие клапан.
Работа двигателя
В четырехтактных или четырехтактных двигателях внутреннего сгорания используются два основных типа клапанов — впускной и выпускной. Впускные клапаны открываются, чтобы позволить потоку топливовоздушной смеси в цилиндры двигателя перед сжатием и воспламенением, в то время как выпускные клапаны открываются, чтобы обеспечить удаление выхлопных газов из процесса сгорания после зажигания.
При нормальной работе коленчатый вал двигателя, к которому прикреплены поршни, связан с распределительным валом как часть механизма клапана для двигателя. Движение коленчатого вала передает движение распределительному валу через цепь привода ГРМ, ремень привода ГРМ или другой зубчатый механизм. Синхронизация и совмещение между положением коленчатого вала (которое определяет положение поршня в цилиндре) и положением распределительного вала (которое определяет положение клапанов для цилиндра) имеют решающее значение не только для максимальной производительности двигателя, но и для предотвращения столкновения поршней и клапанов в двигателях с высокой степенью сжатия.
В цикле впуска поршень впускного цилиндра опускается вниз при открытии впускного клапана. Движение поршня создает отрицательное давление, которое помогает втягивать топливно-воздушную смесь в цилиндр. Сразу после того, как поршень достигает самого нижнего положения в цилиндре (известного как нижняя мертвая точка), впускной клапан закрывается. В цикле сжатия впускной клапан закрывается, чтобы изолировать цилиндр, когда поршень поднимается в цилиндре в наивысшее положение (известное как верхняя мертвая точка), что сжимает топливно-воздушную смесь до небольшого объема. Это действие сжатия служит для обеспечения более высокого давления на поршень при воспламенении топлива, а также для предварительного нагрева смеси, чтобы способствовать эффективному сжиганию топлива. В энергетическом цикле воздушно-топливная смесь воспламеняется, что создает взрыв, который заставляет поршень вернуться в самое нижнее положение и передает химическую энергию, высвобождаемую при сжигании топливно-воздушной смеси, во вращательное движение коленчатого вала. В цикле выпуска поршень снова поднимается вверх в цилиндре, в то время как впускной клапан остается закрытым, а выпускной клапан теперь открыт.Давление, создаваемое поршнем, помогает вытеснять выхлопные газы из цилиндра через выпускной клапан в выпускной коллектор. К выпускному коллектору подсоединены выхлопная система, набор труб, в который входит глушитель для снижения акустического шума и система каталитического нейтрализатора для управления выбросами при сгорании двигателя. Как только поршень достигает верха цилиндра в цикле выпуска, выпускной клапан начинает закрываться, а впускной клапан начинает открываться, начиная процесс снова.
Обратите внимание, что давление в цилиндре на впуске помогает держать впускной клапан открытым, а высокое давление в цикле сжатия помогает удерживать оба клапана закрытыми.
В двигателях с несколькими цилиндрами одни и те же четыре цикла повторяются в каждом из цилиндров, но в определенной последовательности, чтобы двигатель демонстрировал плавную мощность и сводил к минимуму шум и вибрацию. Последовательность движения поршня, клапана и зажигания достигается за счет точной механической конструкции и электрического хронирования сигналов зажигания к свечам зажигания, которые воспламеняют топливно-воздушную смесь.
Движение клапана двигателя
Движение клапанов двигателя приводится в действие распределительным валом двигателя, который содержит ряд кулачков или кулачков, которые служат для создания линейного движения клапана за счет вращения распределительного вала. Количество кулачков на распределительном валу равно количеству клапанов в двигателе. Когда распределительный вал находится в головке блока цилиндров, двигатель называется конструкцией с верхним распредвалом (OHC); когда распределительный вал находится в блоке цилиндров, двигатель называется конструкцией с верхним расположением клапана (OHV).Независимо от конструкции двигателя, основное движение клапанов двигателя происходит за счет движения кулачка против подъемника или толкателя, который создает силу, которая давит на шток клапана и сжимает пружину клапана, тем самым снимая натяжение пружины, которое удерживает клапан в закрытое положение. Это движение штока клапана поднимает клапан над седлом в головке цилиндра и открывает клапан. Как только распределительный вал поворачивается дальше и кулачок перемещается так, что эксцентриковая часть больше не находится в непосредственном контакте с толкателем или толкателем, давление пружины закрывает клапан, поскольку шток клапана перемещается по центральной части кулачка.
Поддержание надлежащего зазора клапана между штоком клапана и коромыслом или кулачком чрезвычайно важно для правильной работы клапанов. Необходим некоторый минимальный зазор для расширения металлических деталей при повышении температуры двигателя во время работы. Конкретные значения зазора варьируются от двигателя к двигателю, и несоблюдение надлежащего зазора может иметь серьезные последствия для работы и производительности двигателя. Если зазор клапанов слишком велик, то клапаны откроются позже, чем оптимально, и закроются раньше, что может снизить производительность двигателя и увеличить шум двигателя.Если зазор клапана слишком мал, клапаны не закроются полностью, что может привести к потере сжатия. Гидравлические подъемники клапана являются самокомпенсирующимися и могут устранить необходимость в регулировке зазора клапана.
В современных двигателях внутреннего сгорания может использоваться различное количество клапанов на цилиндр в зависимости от конструкции и области применения. Меньшие двигатели, такие как те, которые используются в газонокосилках, могут иметь только один впускной клапан и один выпускной клапан. В двигателях более крупных транспортных средств, таких как 4-, 6- или 8-цилиндровые двигатели, может использоваться четыре клапана на цилиндр, а иногда и пять.
Материалы клапанов двигателя
Клапаны двигателя являются одним из компонентов двигателей внутреннего сгорания, которые подвергаются высоким нагрузкам. Необходимость надежной работы двигателя диктует, что клапаны двигателя должны быть способны проявлять устойчивость к многократному и непрерывному воздействию высокой температуры, высокого давления из камеры сгорания, а также механических нагрузок и напряжений, обусловленных динамикой двигателя.
Впускные клапаны двигателей внутреннего сгорания подвергаются меньшим тепловым нагрузкам из-за охлаждающего воздействия поступающей воздушно-топливной смеси, которая проходит через клапан во время впускного цикла.Выхлопные клапаны, напротив, подвергаются более высоким уровням термической нагрузки, поскольку находятся на пути выхлопных газов во время выхлопного цикла двигателя. Кроме того, тот факт, что выпускной клапан открыт во время цикла выпуска и не соприкасается с головкой блока цилиндров, означает, что меньшая тепловая масса поверхности сгорания, а головка клапана имеет больший потенциал для быстрого изменения температуры.
Впускные клапаны из-за более низких рабочих температур обычно изготавливаются из таких материалов, как хром, никель или вольфрамовая сталь.В выпускных клапанах с более высокими температурами могут использоваться более жаропрочные металлы, такие как нихром, кремний-хром или кобальт-хромовые сплавы.
Поверхности клапана, которые подвергаются воздействию более высоких температур, иногда становятся более долговечными за счет приваривания к поверхности клапана стеллита, который представляет собой сплав кобальта и хрома.
Другие типы материалов, используемых для изготовления клапанов двигателя, включают нержавеющую сталь, титан и сплавы трибалой.
Кроме того, для улучшения механических свойств и характеристик износа клапанов двигателя могут применяться покрытия и обработка поверхности.Примеры этого включают хромирование, фосфатирование, нитридное покрытие и завихрение.
Типы клапанов двигателя
Помимо характеристики клапанов двигателя по функциям (впускной и выпускной), существует несколько конкретных типов клапанов двигателя, которые существуют в зависимости от конструкции и материалов. К основным типам клапанов двигателя относятся:
- Монометаллические клапаны двигателя
- Биметаллические клапаны двигателя
- Полые клапаны двигателя
Монометаллические клапаны двигателя, как следует из их названия, изготавливаются из единого материала, который образует как шток клапана, так и головку клапана.Эти типы клапанов двигателя обладают как высокой термостойкостью, так и хорошими антифрикционными свойствами.
Биметаллические клапаны двигателя, также известные как биметаллические клапаны двигателя, изготавливаются путем соединения двух разных материалов вместе с использованием процесса сварки трением для создания клапана с аустенитной сталью на головке клапана и мартенситной сталью для штока клапана. Свойства каждой из этих сталей служат оптимальному назначению: аустенитная сталь на головке клапана обеспечивает жаропрочность и коррозионную стойкость, а мартенситная сталь для штока клапана обеспечивает высокую прочность на разрыв и абразивный износ.
Полые клапаны двигателя — это специальный биметаллический клапан, который содержит полую полость, заполненную натрием. Натрий сжижается при повышении температуры клапана и циркулирует за счет движения клапана, что помогает рассеивать тепло от более горячей головки клапана. Полая конструкция обеспечивает лучшую теплопередачу через шток, чем у сплошных клапанов, поскольку мартенситный материал штока является лучшим проводником тепла, чем аустенитный материал головки. Полые клапаны особенно подходят для использования в современных двигателях, которые обеспечивают большую мощность за счет более компактных и плотных двигателей, которые имеют более высокие температуры выхлопных газов, с которыми твердые клапаны не справляются.Эти более высокие температуры выхлопных газов являются результатом нескольких условий, в том числе:
- Стремление к процессу сжигания обедненной смеси, который сокращает выбросы парниковых газов
- Конструкции двигателя с более высокой степенью сжатия и более высоким давлением сгорания, которые обеспечивают более высокий КПД
- Интегрированные конструкции коллектора, поддерживающие турбокомпрессоры для повышения производительности двигателей меньших размеров
Есть несколько других типов конструкций клапанов двигателя.Так называемые золотниковые клапаны состоят из трубки или втулки, которая находится между стенкой цилиндра и поршнем и которая скользит или вращается с приводом от распределительного вала, как и в случае других клапанов в двигателе. ВНИМАНИЕ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Перемещение золотникового клапана приводит к тому, что отверстия, прорезанные во втулке, выравниваются с соответствующими отверстиями в стенке цилиндра в различных точках цикла двигателя, таким образом, функционируя как простой впускной и выпускной клапан двигателя без сложностей, связанных с коромыслами и подъемниками.
Характеристики клапана двигателя
Типовые клапаны двигателя соответствуют параметрам, указанным ниже.Обратите внимание, что эти данные предназначены для информационных целей, и имейте в виду, что параметры, используемые для определения клапанов двигателя, могут варьироваться от производителя к производителю. Понимая спецификации, покупатели получают больше возможностей для обсуждения своих конкретных потребностей с поставщиками клапанов двигателя.
- Диаметр стержня — диаметр стержня клапана двигателя
- Длина штока — расстояние от наконечника штока до головки клапана
- Угол седла — угол среза седла головки клапана, измеренный в угловых градусах, типичные значения находятся в диапазоне 20 o — 60 o
- Материалы клапана — описывает материал или материалы, используемые для изготовления клапана
- Покрытия — обозначает любые покрытия или обработки поверхности, нанесенные на основной материал клапана, такие как хромирование, нитрид, PVD или керамика, например
Сводка
В этой статье представлен краткий обзор клапанов двигателя, включая их сущность, ключевую номенклатуру, принцип их работы, работу клапана, материалы, типы и характеристики.Для получения информации по другим темам обратитесь к нашим дополнительным руководствам или посетите платформу Thomas Supplier Discovery Platform, где вы можете найти потенциальные источники поставок для более чем 70 000 различных категорий продуктов и услуг.
Источники:
- https://www.theengineerspost.com/engine-valves-types/
- https://www.aopa.org/training-and-safety/air-safety-institute/valve-safety
- https://www.howacarworks.com/basics/the-engine-how-the-valves-open-and-close
- http: // ground-mag.com
- https://dieselnet.com
- http://www.federalmogul.com/en-US/OE/Products/Pages/Product-Details.aspx?CategoryId=48&SubCategoryId=191&ProductId=840
- http://www.ijmerr.com/uploadfile/2015/0409/2015040
51873.pdf
- https://www.eaton.com/us/en-us/catalog/engine-valvetrain/engine-valves.html
- http://www.nextech.co.in
- https://aviamech.blogspot.com/2013/02/piston-engine-valves.html
Другие изделия клапана
Больше из Насосы, клапаны и аксессуары
Троиц с двигателем «Приора» (16 клапанов): причины и устранение проблемы.Как проверить свечи зажигания и катушку зажигания «Лада Приора»
Несмотря на колоссальную критику в адрес Lada Priory, это один из самых популярных автомобилей, сходивших с конвейера АвтоВАЗа за последние годы. «Приора» оснащалась довольно удачным двигателем с хорошей динамикой, салон получился очень комфортным. И в максимальной комплектации предлагаются полезные опции. Но при этом время от времени машина доставляет владельцам мелкие проблемы. Одна из самых популярных неисправностей — двигатель Приора троит (16 клапанов).Причины этого явления довольно неприятны. К тому же в результате перегревается мотор.
Когда водитель заводит машину утром, двигатель работает не плавно, как раньше, а с перебоями. В это время из выхлопной трубы доносятся глухие звуки. При этом появляется стойкий и резкий запах несгоревшего топлива. Вибрации постоянно нарастают, а это чревато трещинами на подушках. Так что двигатель троит на холоде.
Мотор
Троит: чем он опасен?
Это довольно критическое явление, особенно если агрегат начинает вибрировать при разгоне.
Такое поведение особенно опасно, когда водитель решает совершить обгон, но на встречной полосе находятся машины. В процессе, пока мотор троит, мощность двигателя значительно снижается. Снижается степень сжатия — может не хватить динамики для успешного завершения маневра.
Если учесть, что «Лада Приора» выпускается с 2007 года, то часто встречаются случаи, когда двигатель стучит так же, как на старом автомобиле 20 лет назад.Это работа двигателя на трех цилиндрах. Может быть установлена последняя версия прошивки, но если двигатель стоит на автомобиле Лада Приора, проверка идет, то эта машина долго не протянет.
Типичные причины и меры предосторожности
Стоит учесть, что возможных причин отключения одного из цилиндров очень много.
Некоторые неисправности можно выявить и устранить даже без материальных затрат. Остальные поддаются диагностике. В результате может потребоваться замена двигателя или капитальный ремонт.
Система снабжения
Если троит двигатель «Приора» (16 клапанов), то причины могут быть банальными. Когда в цилиндре нет вспышки, возможно, просто нет топлива. Если у него нормальная степень сжатия, стоит провести диагностику системы питания. Следует уделить максимум внимания воздушному фильтру и патрубку. Необходимо убедиться, что хомуты надежно затянуты, исправен ли сам корпус пылесоса, нет ли утечек наружного воздуха. Также обратите внимание на трубку.Они должны быть плотно закреплены на дроссельном узле. О том, что некоторые детали неисправны, можно сообщить об утечках топлива, трещинах, битом пластике.
Поломка форсунки, закупорка
Когда двигатель Приора тротится (16 клапанов), причины чаще всего в форсунке.
Может быть неисправен или банально забит. Нередко с этой проблемой сталкиваются новички и любители заливать в бак самые разные форсунки для очистки жидкости. Все это приводит к тому, что грязь сначала отслаивается в баке, затем в топливопроводе.И в результате он упадет в форсунки, где благополучно застрянет.
Обмотка сопла
Может не только забиться грязью — в «Приоры» часто горят обмотки элементов. В этом случае положение легко восстанавливается своими руками. Снимается крышка, а затем коллектор. Далее проверяются обмотки сопла. С помощью мультиметра измерьте сопротивление обмоток. Оно должно быть около 11-15 Ом. Если показание меньше, элемент следует заменить.
Как устранить неисправность форсунок?
Если сопротивление в норме, то рекомендуется полностью демонтировать топливную рампу и тщательно промыть каждую деталь.Не следует выполнять эту операцию, если нет опыта в этой работе. Для промывки необходимо открыть клапаны форсунок. Затем подайте туда промывку под давлением. Это легко, но без опыта можно все испортить.
Плохое топливо
Это одна из возможных причин, по которой двигатель работает на холостом ходу.
Чтобы вернуться к нормальной работе, можно попробовать поменять заправку. Обычно это помогает исправить множество недоразумений. 16-ти клапанный двигатель «Приоры» лучше заправлять хорошим 95-м бензином.Заливать что-то с более высоким октановым числом не стоит. Это приведет только к перегреву. Также можно попробовать заменить фильтры — воздушный и топливный. Иногда это решает проблему.
Система зажигания
Опытный автолюбитель, столкнувшийся с трехцилиндровым двигателем, сразу же приступает к диагностике свечи зажигания. Лада Приора должна хорошо остывать, иначе есть риск получить ожог при откручивании. Если через несколько секунд выключить зажигание и проверить искру, то одна из них будет влажной от бензина.Также рекомендуется проверять каждую деталь отдельно на наличие искры.
В случае неисправности проблема решается заменой свечи зажигания. Иногда достаточно прижать крышкой потенциально неисправную — машина вернется в нормальный режим работы. Вообще система зажигания в этой машине — самая проблемная часть. Если двигатель «Приора» троит (16 клапанов), причины можно искать очень долго, и диагностика ничего не даст, даже если все будет сделано правильно.И только замена всех элементов может дать положительный результат.
Диагностика свечей на лету
Когда двигатель работает горячий или холодный, можно проверить нагар на свечах. Если покрытие белого цвета, то это говорит о бедной смеси и перегреве двигателя. Черный оттенок сообщает о насыщенном миксе. И в первом, и во втором случае есть проблемы с работой электроники. Это либо установка новой прошивки, либо замена компьютера. Обычная свеча имеет кирпичный цвет.Кстати, двигатель может работать на холостом ходу, если деталь влажная. Также из-за этого значительно увеличивается время прогрева. Помимо свечей может встряхнуть и катушка зажигания. «Приора» (8 клапанов) оснащена таймером зажигания. Часто наблюдается перегрев катушки. Вы можете восстановить работу мотора, просто заменив элемент.
Проверка катушки зажигания
Специального метода, которым можно было бы проверить работу деталей, просто нет. Инструкция к автомобилю — это один из методов самодиагностики.Так, при выключенном зажигании проверяют, надежно ли закреплена катушка зажигания («Приора» — не исключение) к мотору.
Тогда посмотрите на надежность электрических соединений в цепи низкого напряжения. Если все в порядке, то проверьте наличие искры. Для этого снимается катушка зажигания. В наконечник вставляется тестовая пробка и прижимается к металлической части двигателя. Далее крутим стартер. Если искры нет, замените катушку. Если есть вспышка, но двигатель не запускается, замените свечу.
Контроллер
Из-за контроллера двигатель тоже нестабильный. Вы можете найти его прямо в машине. Часто перегорает микросхема в приборе или заливает жидкостью из ТЭНа. Иногда после хорошего дождя в салон попадает вода с улицы.
Если говорить о реставрации, то при определенных навыках возможен самостоятельный ремонт. Рекомендуется обратиться на СТО или купить новый агрегат. К тому же прошивка может производиться только на специальном оборудовании.
Сводка
Итак, мы посмотрели, почему машина троит. Это далеко не все возможные причины, но они помогают точно диагностировать работу двигателя и найти неисправность.
Клапаны и порты в четырехтактных двигателях
Клапаны и порты в четырехтактных двигателях
Ханну Яэскеляйнен, Магди К. Хаир
Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.
Abstract : Компоненты, расположенные после впускного коллектора в четырехтактных дизельных двигателях, выполняют важные функции в управлении подачей воздуха в цилиндр. Тарельчатые клапаны регулируют синхронизацию потока в цилиндр и из него. Конструкция впускного канала влияет на пропускную способность двигателя, а также на объемное движение воздуха, поступающего в цилиндр.
Клапаны
По мере того, как воздушный поток проходит через различные компоненты и ступени впускной системы, различные свойства и характеристики всасываемого заряда были изменены для достижения общих целей системы управления всасываемым зарядом.Фильтр всасываемого воздуха обеспечивает надлежащую чистоту воздуха, состав наддувочного воздуха и содержание кислорода контролируются путем подачи системы рециркуляции отработавших газов во всасываемый воздух, а компрессор и охладитель наддувочного воздуха обеспечивают достижение целевых значений давления и температуры во впускном коллекторе, а также плотность всасываемого заряда. в проектных пределах. Несколько заключительных аспектов управления воздухом достигаются после того, как всасываемый заряд выходит из впускного коллектора и попадает в цилиндр. Клапаны или порты контролируют время подачи воздуха в цилиндр.Кроме того, канал между впускным коллектором и цилиндром может оказывать значительное влияние на поток, когда он входит в цилиндр, и может использоваться для передачи подходящего объемного движения и кинетической энергии заряду для поддержки смешивания воздуха, топлива и промежуточного сгорания. продукты в цилиндре.
В четырехтактных двигателях всасываемый газ поступает в цилиндр через порт, расположенный в головке цилиндра, и мимо клапана, используемого для открытия и закрытия порта. В двухтактных двигателях — обсуждаемых в другом месте — обычно используются отверстия в гильзе цилиндра, которые попеременно закрываются и не закрываются поршнем.
Рисунок 1 . Номенклатура цельного тарельчатого клапана
Поток газа в цилиндр и из цилиндра в 4-тактных двигателях контролируется почти исключительно тарельчатыми клапанами (рис. 1). Хотя использовались или предлагались другие конструкции клапана, кажется, что ни одна из них не может сравниться по надежности и герметизирующей способности с тарельчатым клапаном. Наиболее распространенной конструкцией тарельчатого клапана в автомобильной промышленности является цельный клапан, в котором весь клапан изготовлен из одного и того же материала. Однако доступны и другие варианты, в том числе:
- Конструкция приварного наконечника имеет отдельный наконечник, приваренный к штоку над канавкой.Наконечник может быть изготовлен из материала, который намного более износостойкий, чем остальная часть клапана.
- Конструкция, состоящая из двух частей, имеет отдельный шток, приваренный над галтелем, рис. 2 слева.
- Конструкция с внутренним охлаждением имеет полый шток, содержащий охлаждающую жидкость, такую как металлический натрий или натрий-калиевая смесь, и обычно используется в сверхмощных и высокоэффективных выпускных клапанах, рис. 2 в центре. Пики температур клапана уменьшаются за счет «вибрирующего эффекта» расплавленного металла, и эти конструкции могут особенно хорошо выдерживать термические нагрузки.Температуру в полой шейке можно снизить примерно на 80–130 К, что снижает общий износ клапана и вкладыша седла клапана.
- Некоторые конструкции также имеют полую полость в головке клапана, содержащую металлический натрий, рис. 2, справа. Это продолжение классического полого клапана, заполненного натрием, с дополнительной полостью в головке клапана. Это может привести к дополнительным скачкам температуры в головке клапана и еще больше увеличить срок службы клапана.
- Сварная конструкция поверхности седла имеет седло клапана, сваренное с твердым покрытием, чтобы лучше выдерживать условия, которые в противном случае привели бы к экстремальному износу седла клапана и / или коррозии.
Рисунок 2 . Примеры конструкций тарельчатого клапана
Слева: Двухкомпонентный клапан со сплошным штоком. Центр: Клапан с полым штоком.
Справа: Клапан с полым штоком с дополнительной полостью на головке клапана.
(Источник: Mahle)
В дополнение к различным стилям конструкции клапаны могут иметь различные усовершенствования конструкции для повышения их долговечности. Деформационное упрочнение поверхности седла может использоваться для умеренного увеличения износостойкости седла в тех случаях, когда сварная конструкция поверхности седла не требуется.Обработка поверхности стержня может использоваться для уменьшения трения и / или износа, особенно если в противном случае может возникнуть адгезионный износ. Алюминирование поверхности седла клапана, а иногда и поверхности сгорания для улучшения коррозионной стойкости в среде оксида свинца когда-то было популярным для двигателей, работающих на этилированном бензине. Крышки наконечников, установленные на конце штока клапана, могут использоваться для повышения износостойкости наконечников, когда сварка разнородных металлов является проблемой.
###
10 самых необычных двигателей всех времен — особенность — автомобиль и водитель
МАРК БРЭМЛИ, АРКИВИО ПЕРИНИ, АНДРЕ РИТЦИНГЕР, ДЖОН РОУ, ДЭНИЕЛ ВОН, УГО.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ
Большинство автомобильных двигателей сегодня очень похожи. Даже те, которые мы бы назвали разными, такие как плоские шестерки Porsche или новый двухцилиндровый Fiat, следуют проверенным инженерным принципам, которые доминировали в отрасли на протяжении последних 50 лет. Но не каждый производитель автомобилей играет по правилам при разработке двигателей. Некоторые из движущих сил нонконформистов достаточно странны, чтобы поднять бровь, но некоторые из них совершенно неординарны, едят рубашки и обнимают незнакомцев безумцами.Иногда к безумию добавлялся метод, например, попытка повысить эффективность. В других случаях было ясно, что заключенные получили контроль над инженерным отделом. И у нас отлично с этим .
Чтобы составить наш список из 10 сумасшедших автомобильных двигателей, мы следовали некоторым правилам: только серийные силовые установки для легковых автомобилей; никаких гоночных мельниц или разовых экспериментов, потому что это странно по определению. Мы также отказались от двигателей, которые выделяются только тем, что являются первыми или самыми крупными в чем-либо.Это потому, что цель здесь — подчеркнуть безумный дизайн двигателя, от которого страдает ваш мозг.
Так что давайте стрелять.
МАРК БРЭМЛИ, АРХИВИО ПЕРИНИ, АНДРЕ РИТЦИНГЕР, ДЖОН РОУ, ДЭНИЕЛ ВОН, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ
Статистика — это легенда: 8,0-литровый двигатель W-16 мощностью более 1000 л.с. является самым мощным и сложным серийным двигателем в истории. У него 64 клапана, четыре турбокомпрессора и достаточное количество шума для измельчения дорожного покрытия — 922 фунт-фут при 2200 оборотах в минуту — чтобы помять нижнее белье Бога.Его W-образная 16-цилиндровая компоновка, по сути, оргия узкоугольных Volkswagen VR4, никогда не использовалась раньше и, вероятно, никогда не будет использоваться снова. Да, и еще с гарантией.
Это инженерный единорог, который встречается только раз в жизни, что-то вроде того, что случилось бы, если бы космическая программа «Аполлон» и Фердинанд Порше каким-то образом совместно забеременели Титаник . Если это не интересно, мы не знаем, что.
МАРК БРЭМЛИ, АРКИВИО ПЕРИНИ, АНДРЕ РИТЦИНГЕР, ДЖОН РОУ, ДЭНИЕЛ ВОН, УГО.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ
В начале прошлого века автомобильный пограничник Чарльз Йель Найт получил прозрение. Он рассудил, что традиционные тарельчатые клапаны слишком сложны, а сопутствующие пружины и толкатели слишком неэффективны. Его решение было названо втулочным клапаном — скользящей гильзой вокруг поршня, приводимой в движение валом с зубчатой передачей, который открывал впускные и выпускные отверстия в стенке цилиндра.
Удивительно, но это сработало. Двигатели с клапаном на впрысках обеспечивали высокий объемный КПД, низкий уровень шума и отсутствие риска смещения клапана; Недостатков было немного, но среди них был высокий расход масла.Найт запатентовал свою идею в 1908 году, и позже она появилась во всем, от Mercedes-Benz до Panhards и Peugeot. Технология вышла из моды, когда тарельчатые клапаны стали лучше справляться с нагревом и высокими оборотами.
МАРК БРЭМЛИ, АРХИВИО ПЕРИНИ, АНДРЕ РИТЦИНГЕР, ДЖОН РОУ, ДЭНИЕЛ ВОН, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ
Представьте, что вам, автомобилестроителю 1950-х годов, предлагают экспериментальный двигатель.Этот немецкий чувак по имени Феликс заходит в ваш офис и пытается продать вам идею трехконечного поршня, вращающегося внутри овального ящика, сжигающего топливо на своем пути. Это похоже на огненный шар в клетке для бинго или, может быть, на футбольный мяч в стиральной машине. И он не только работает, но и невероятно сбалансирован.
Сам ротор имеет треугольную форму с выпуклыми гранями, а его три угла называются вершинами. Когда ротор вращается внутри корпуса, он создает три камеры, которые отвечают за четыре фазы цикла мощности: впуск, сжатие, мощность и выпуск.Каждая поверхность ротора всегда работает на одной стадии цикла. Если это звучит эффективно, то это потому, что это… вроде как. Выходная мощность в лошадиных силах высока по сравнению с рабочим объемом двигателя, но они всасывают топливо как эй, потому что камера сгорания удлиненная.
Странные вещи, не так ли? Знаете, что страннее? Все еще в производстве . Купите Mazda RX-8, и вы получите двигатель Ванкеля на 9000 об / мин! Чего ты ждешь? Вставай с дивана!
МАРК БРЭМЛИ, АРКИВИО ПЕРИНИ, АНДРЕ РИТЦИНГЕР, ДЖОН РОУ, ДЭНИЕЛ ВОН, УГО.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ
Коннектикутская компания Eisenhuth Horseless Vehicle Company была основана Джоном Эйзенхутом, жителем Нью-Йорка, который утверждал, что изобрел бензиновый двигатель и имел неприятную привычку получать иски от своих деловых партнеров. Его составные модели 1904–07 годов имели рядный трехцилиндровый двигатель, в котором два внешних цилиндра приводили в действие невоспламененный, «мертвый» средний цилиндр своими выхлопными газами; средний цилиндр обеспечивал мощность двигателя. Наружные цилиндры были огромными, их было 7.5-дюймовые отверстия, но внутреннее, 12 дюймов в диаметре, было еще больше. Айзенхут заявил о 47-процентном увеличении экономии топлива по сравнению со стандартным двигателем аналогичного размера. Он также обанкротился в 1907 году. Подумайте.
МАРК БРЭМЛИ, АРХИВИО ПЕРИНИ, АНДРЕ РИТЦИНГЕР, ДЖОН РОУ, ДЭНИЕЛ ВОН, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ
Предоставьте французам разработать интересный двигатель, который на первый взгляд кажется обычным.Знаменитый галльский производитель Panhard, широко известный своей одноименной штангой подвески, снабдил свои послевоенные автомобили серией боксеров с воздушным охлаждением и алюминиевых блоков. Они отличались блочной конструкцией — блок и головка блока цилиндров были одной отливкой — пружины торсионных клапанов, кривошип с роликовыми подшипниками, полые алюминиевые толкатели и выхлопные трубы, которые в одном варианте выполняли роль опор двигателя. Рабочий объем варьировался от 610 до 850 куб. мощность составляла от 42 до 60 л.с., в зависимости от модели. Лучшая часть? Twin Panhard остается самым необычным двигателем, когда-либо побеждавшим в своем классе на «24 часах Ле-Мана».
МАРК БРЭМЛИ, АРХИВИО ПЕРИНИ, АНДРЕ РИТЦИНГЕР, ДЖОН РОУ, ДЭНИЕЛ ВОН, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ
Странное название, конечно, но двигатель еще более странный. 3,3-литровый Commer TS3 представлял собой оппозитно-поршневой двигатель с наддувом (каждый цилиндр имеет два поршня с обращенными друг к другу головками, головки цилиндров отсутствуют), одно-коленчатый вал (большинство двигателей с оппозитными поршнями имеет два), трехцилиндровый , двухтактный дизельный двигатель.Группа Rootes придумала этого зверя для своих грузовиков Commer. TS3 обладал оригинальной компоновкой, шатунными коромыслами размером с маленькую кошку и крутящим моментом в 270 фунт-фут, более мощным, чем у многих более крупных дизелей того времени.
Запутались? Посмотреть анимацию можно здесь.
МАРК БРЭМЛИ, АРХИВИО ПЕРИНИ, АНДРЕ РИТЦИНГЕР, ДЖОН РОУ, ДЭНИЕЛ ВОН, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ
Думаете, Коммерсант был умен? Этот кладет его на трейлер.Английская Lanchester Motor Company была основана в 1899 году. Lanchester Ten, представленный годом позже, был оснащен 4,0-литровым плоским спаренным двигателем с воздушным охлаждением и двойным коленчатым валом, приводящим в движение задние колеса. Один кривошип располагался над другим, и каждый поршень имел по три шатуна — два легких внешних и более тяжелый в центре. Легкие стержни шли к одному кривошипу, тяжелые — к другому, и два вала вращались в противоположных направлениях. Результат — 10,5 л.с. при 1250 об / мин и заметное отсутствие вибрации. Если вы когда-нибудь задумывались, как выглядит инженерная элегантность, то вот она.
МАРК БРЭМЛИ, АРХИВИО ПЕРИНИ, АНДРЕ РИТЦИНГЕР, ДЖОН РОУ, ДЭНИЕЛ ВОН, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ
Как и Veyron, суперкар Cizeta (урожденная Cizeta-Moroder) V16T ограниченного производства определяется двигателем. 6,0-литровый V-16 мощностью 560 л.с. в брюхе Ciz — не настоящий V-16. Если исходить из порядка стрельбы и конструкции, это всего лишь два плоских двигателя V-8, которые делят один блок и соединены центральным ГРМ.Это делает его не менее безумным. Поскольку двигатель установлен поперечно, центральный вал передает мощность на задний мост. Чизеты встречаются реже, чем честные политики, их всего лишь крошечное число. Истинный производственный номер, конечно, является секретом, но один из них время от времени всплывал в Лос-Анджелесе, где его владелец безжалостно проверял его до того, как таможенники конфисковали его в 2009 году.
МАРК БРЭМЛИ, АРКИВИО ПЕРИНИ, АНДРЕ РИТЦИНГЕР, ДЖОН РОУ, ДЭНИЕЛ ВОН, УГО.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ
Двигатель Commer Knocker был фактически вдохновлен (если это правильное слово) французским семейством двигателей с оппозитными поршнями, которые выпускались в двух-, четырех- и шестицилиндровом исполнении до начала 1920-х годов. Вот как это работает для двухцилиндрового двигателя: два поршня приводят в движение коленчатый вал обычным образом. Против двух поршней находится еще один набор из двух вертикально противоположных поршней, соединенных крейцкопфом. В свою очередь, эта крейцкопфа приводит в движение два длинных шатуна, соединенных с кривошипом на 180 градусов относительно нижних поршней.Противоположные поршни эффективно образуют головки цилиндров. Таким образом, шестицилиндровый двигатель имеет 12 поршней и кривошип с жесткостью спагетти на кручение.
Серийные двигатели варьировались от 2,3-литровых двойных до 11,4-литровых «шестерок». Был также чудовищный 13,5-литровый четырехцилиндровый гоночный автомобиль, который стал первым автомобилем, разогнавшимся до 100 миль в час, управляемым Луи Риголли в Остенде, Бельгия, в 1904 году. Эти сумасшедшие французы, явно не скованные традиционным мышлением, также управляли грубой формой впрыск топлива в их первых двигателях.
МАРК БРЭМЛИ, АРХИВИО ПЕРИНИ, АНДРЕ РИТЦИНГЕР, ДЖОН РОУ, ДЭНИЕЛ ВОН, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ
Если идея о том, что ваш двигатель вращается позади вас, кажется хорошей, то Adams-Farwell, родом из Дабьюка, штат Айова, — это ваша машина. Что ж, вращался не весь двигатель: только цилиндры и поршни, потому что коленчатые валы на этих трех- и пятицилиндровых двигателях были неподвижными. Расположенные в радиальном направлении цилиндры имели воздушное охлаждение и действовали как маховик, когда двигатель запускался и работал.Привод снимался с цилиндра через короткую одинарную цепь, и агрегаты были легкими для того времени — 190 фунтов для 4,3-литрового трехцилиндрового двигателя и 265 фунтов для 8,0-литрового пятого.
Сами автомобили были с задним расположением двигателя, а пассажирский салон был установлен далеко вперед, что идеально подходило для полного уничтожения в случае аварии. Принимая во внимание отсутствие механической надежности на заре автомобилестроения, мы задаемся вопросом, насколько комфортно вы чувствовали бы себя примерно в 265 фунтах, вращаясь со скоростью 1000 об / мин позади своих икр.
МАРК БРЭМЛИ, АРХИВИО ПЕРИНИ, АНДРЕ РИТЦИНГЕР, ДЖОН РОУ, ДЭНИЕЛ ВОН, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ
Тридцать цилиндров, пять рядов, пять карбюраторов, пять распределителей, 1255 кубических дюймов. Вот что происходит, когда Детройт идет на войну. Chrysler построил A57, чтобы в спешке выполнить контракт на поставку танковых двигателей времен Второй мировой войны, используя как можно больше готовых компонентов. Он состоял из пяти рядных шестерок легковых автомобилей размером 251 куб, расположенных радиально вокруг центрального выходного вала.Получившаяся 425-сильная куча волосатой свободы приводила в движение танки M3A4 Lee и M4A4 Sherman.
МАРК БРЭМЛИ, АРХИВИО ПЕРИНИ, АНДРЕ РИТЦИНГЕР, ДЖОН РОУ, ДЭНИЕЛ ВОН, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ
Хотя простое упоминание о гоночном двигателе — это ящик странностей для автомобилей Пандоры, BRM H-16 слишком неприятен, чтобы не упомянуть. 3,0-литровый 32-клапанный H-16 от BRM, по сути, две плоские восьмерки, делающие горизонтальный удар, был работой дизайнера Тони Радда.Он выдавал более 400 л.с., но был ограничен весом и надежностью. Джим Кларк дал двигателю единственную победу в Формуле-1 на Гран-при США 1966 года, а Джеки Стюарт однажды сравнил его с лодочным якорем. Это звучало как четыре субаруса в почтовом ящике.
Это был не единственный 16-цилиндровый двигатель, с которым баловались ребята из BRM. Они также разработали 1,5-литровый V-16 с наддувом. Он разгонялся до 12 000 об / мин и выдавал 485 л.с. Это была бы чертовски крутая замена на Corolla AE86.
Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.
Четырехтактный цикл
— обзор
13.18 Цикл Отто
Циклы внешнего сгорания газа Стерлинга и Эрикссона изначально были разработаны для борьбы с опасными котлами высокого давления первых паровых двигателей. Двигатель внутреннего сгорания Ленуара был проще, меньше по размеру и использовал более удобное топливо, чем любой из этих двигателей, но имел очень низкий тепловой КПД.Брайтону удалось повысить тепловой КПД двигателя внутреннего сгорания, обеспечив процесс сжатия перед сгоранием с использованием двухпоршневой техники Стирлинга и Эрикссона с отдельной камерой сгорания. Но конечной целью разработки коммерческих двигателей внутреннего сгорания было объединить все основные процессы впуска, сжатия, сгорания, расширения (мощности) и выпуска в одном поршневом цилиндре. Это было окончательно достигнуто в 1876 году немецким инженером Николаусом Августом Отто (1832–1891).Основные элементы модели ASC цикла Отто показаны на рисунке 13.48. Он состоит из двух изохорных процессов и двух изоэнтропических процессов.
Рисунок 13.48. Стандартный цикл воздуха Отто.
После нескольких лет экспериментов Отто наконец построил успешный двигатель внутреннего сгорания, который позволил всем основным процессам протекать в одном устройстве поршень-цилиндр. Термодинамический цикл двигателя Отто требовал четырех тактов поршня и двух оборотов коленчатого вала, но он работал плавно, был относительно тихим и очень надежным и эффективным.Двигатель Отто имел немедленный успех, и к 1886 году было продано более 30 000 экземпляров. Они стали первым серьезным конкурентом паровой машины на рынке двигателей малого и среднего размера.
Первоначально двигатель Отто использовал осветительный газ (метан) в качестве топлива, но к 1885 году многие двигатели с циклом Отто уже были преобразованы в двигатели, работающие на жидких углеводородах (бензине). Разработка гениального карбюратора с плавающей подачей для испарения жидкого топлива в 1892 году немцем Вильгельмом Майбахом (1847–1929) ознаменовала начало автомобильной эры.Немецкому инженеру Карлу Фридриху Бенцу (1844–1929) обычно приписывают создание первого практичного автомобиля с использованием низкоскоростного двигателя цикла Отто, работающего на жидком углеводородном топливе, в 1885 году. Он использовал тепло выхлопных газов двигателя для испарения топлива до того, как оно испарилось. подается в двигатель.
Кто изобрел цикл «Отто»?
Николаус Отто не знал, что четырехтактный двигатель внутреннего сгорания был запатентован в 1860-х годах французским инженером Альфонсом Эженом Бо де Роша (1815–1893).Однако Рошас на самом деле не строил и не тестировал двигатель, который он запатентовал. Поскольку Отто был первым, кто фактически сконструировал и эксплуатировал двигатель, цикл назван в его честь, а не в честь Роша.
В 1878 году шотландский инженер Дугальд Клерк (1854–1932) разработал двухтактную версию цикла Отто, производящую один оборот коленчатого вала за термодинамический цикл (это было похоже на двигатель Ленуара, но с предварительным сжатием). В 1891 году Клерк продолжил разработку концепции наддува двигателя внутреннего сгорания.Это увеличило тепловой КПД двигателя за счет дальнейшего сжатия индукционного заряда перед зажиганием.
Хотя двухтактный двигатель Клерка по своей природе был менее экономичен, чем четырехтактный двигатель Отто, он давал более равномерную выходную мощность (что важно только для одно- или двухцилиндровых двигателей) и имел почти вдвое большую мощность по сравнению с массой. передаточное отношение двигателя Отто. Двухтактный двигатель с циклом Отто (он никогда не стал известен как цикл Клерка) стал успешным в качестве небольшого и легкого двигателя для лодок, газонокосилок, пил и т. Д.
Тепловой КПД цикла Отто определяется как
(ηT) Otto = (W˙out) netQ˙H = Q˙H− | Q˙L | Q˙H = 1− | Q˙L | Q˙ H
, где из рисунка 13.48 | Q˙L | = m˙ (u2s − u3) и Q˙H = m˙ (u1 − u4s).
Тогда тепловой КПД Otto hot ASC составляет
(ηT) Ottohot ASC = 1 − u2s − u3u1 − u4s
Для Otto hot ASC , таблица C.16a или C.16b в термодинамических таблицах. для сопровождения современной инженерной термодинамики используются для определения значений удельных внутренних энергий.Поскольку процессы с 1 по 2 с и с 3 по 4 с являются изоэнтропическими, мы используем столбцы v r в этих таблицах, чтобы найти
v3v4s = vr3vr4 = v2sv1 = vr2vr1 = CR
где CR = v3 / v4s — степень изоэнтропического сжатия. Если температура и давление на входе ( T 3 и p 3 ) известны, мы можем найти u 3 и v r 3 из таблицы.Затем, если мы знаем степень сжатия (CR), мы можем найти
vr4 = vr3CR и vr2 = vr1 × CR
Теперь мы можем найти u 4 s и T 4 s из таблиц. Однако, чтобы найти u 1 , T 1 , u 2s и T 2s , нам необходимо знать больше информации о системе. Следовательно, теплота сгорания ( Q H / м = Q˙H / m˙), максимальное давление ( p 1 ) или максимальная температура ( T 1 ) в цикле обычно дается полный анализ.
Для Otto холодный ASC ,
| Q˙L | = m˙ (u2s − u3) = m˙cv (T2s − T3) и Q˙H = m˙ (u1 − u4s) = m˙cv (T1 − T4s).
Тогда
(ηT) Ottocold ASC = 1 − T2s − T3T1 − T4s = 1− (T3T4s) (T2s / T3−1T1 / T4s − 1)
Процесс с 1 по 2 с и процесс от 3 до 4 с изоэнтропичны, поэтому
T1 / T2s = T4s / T3 = (v1 / v2s) 1 − k = (v4s / v3) 1 − k = (p1 / p2s) (k − 1) / k = ( p4s / p3) (k − 1) / k
Поскольку T1 / T4s = T2s / T3,
(13.30) (ηT) Ottocold ASC = 1 − T3 / T4s = 1 − PR (1 − k) / k = 1 − CR1 − k
, где CR = v3 / v4s — степень изоэнтропического сжатия, а PR = p4s / p3 — степень изоэнтропического давления.
Поскольку T3 = TL, но T4s
Пример 13.14
Изэнтропическая степень сжатия бензинового двигателя с циклом Отто новой газонокосилки составляет 8.От 00 до 1, а температура входящего воздуха составляет T 3 = 70,0 ° F при давлении p 3 = 14,7 фунтов на кв. Дюйм. Определите
- а.
Температура воздуха в конце такта изоэнтропического сжатия T 4 с .
- б.
Давление в конце такта изоэнтропического сжатия перед воспламенением p 4 s .
- г.
Тепловой КПД двигателя Otto cold ASC.
Решение
- а.
Степень изоэнтропического сжатия для двигателя с циклом Отто определяется как
CR = v3v4s = (T3T4s) 11 − k
, откуда мы получаем
T4s = T3CR1 − k = T3 × CRk − 1 = (70,0 + 459,67 R ) (8,00) 0,40 = 1220 R
- б.
Для цикла Отто изоэнтропическое давление и степени сжатия связаны соотношением PR = CR k , где PR = p4s / p3 и CR = v 3 / v 4 s .Тогда
p4s = p3CRk = (14,7 фунтов на кв. Дюйм) (8,00) 1,40 = 270. psia
- c.
Уравнение (13.30) дает тепловой КПД холодного ASC Отто как
(ηT) Ottocold ASC = 1 − T3T4s = 1 − PR1 − kk = 1 − CR1 − k = 1− (8,00) 1−1,40 = 0,565 = 56,5%
Упражнения
- 40.
Если газонокосилка в Примере 13.14 остается на улице в холодный день, когда T 3 понижается с 70,0 ° F до 30,0 ° F, определите новую температура в конце такта изоэнтропического сжатия.Предположим, что все остальные переменные не изменились. Ответ : T 4 s = 1130 R.
- 41.
Если зазор газонокосилки в Примере 13.14 уменьшен таким образом, что степень сжатия увеличится с 8,00 до 8,50 до 1, определите новое давление в конце такта изоэнтропического сжатия. Предположим, что все остальные переменные не изменились. Ответ : p 4 s = 294.1 фунт / кв. Дюйм.
- 42.
Если максимальная температура в цикле ( T 4 с ) составляет 2400 R, определите тепловой КПД этого двигателя по циклу Отто hot ASC . Предположим, что все остальные переменные не изменились. Ответ : ( η T ) Otto hot ASC = 52,8%.
Фактическая диаграмма давление-объем для двигателя, работающего в газовом или паросиловом цикле, называется индикаторной диаграммой , 10 , а замкнутая площадь равна чистой обратимой работе, производимой внутри двигателя. среднее эффективное давление (МПа) поршневого двигателя — это среднее эффективное давление , действующее на поршень во время его перемещения. означает (или обратимый) рабочий выход (WI) из поршня — это чистая положительная площадь, ограниченная индикаторной диаграммой, как показано на рисунке 13.49, и равна произведению mep и смещения поршня, V̶2− V̶1 = π4 (Диаметр отверстия) 2 (Ход), или
(13,31) (WI) вых = mep (V̶2 − V̶1)
Рисунок 13.49. Соотношение среднего эффективного давления (mep) и индикаторной диаграммы.
указывает выходную мощность (W˙I) — это чистая (реверсивная) мощность, развиваемая внутри всех камер сгорания двигателя, содержащего n цилиндров, и составляет
(13.32) (W˙I) out = mep (n) (V̶2 − V̶1) (N / C)
, где N — частота вращения двигателя, а C — количество оборотов коленчатого вала на рабочий ход ( C = 1 для двух -тактный цикл и C = 2 для четырехтактного цикла).Фактическая выходная мощность двигателя , измеренная динамометром, называется выходной мощностью тормозов (Вт˙Б), а разница между указанной мощностью и мощностью торможения известна как мощность трения , мощность (т. Е. Мощность рассеивается на внутреннем трении двигателя) W˙F, или
(W˙I) out = (W˙B) out + W˙F
, следовательно, механический КПД двигателя η м просто равен ( см. таблицу 13.2)
(13,33) ηm = W˙actualW˙reversible = (W˙B) out (W˙I) out = 1 − W˙F (W˙I) out
Из уравнения.(13.31) можно записать
mep = (WI) out / (V̶2 − V̶1) = ((WI) out / ma) / v2 − v1 = [(W˙I) out / m˙a] / (v2 −v1)
, где м a и m˙a — масса воздуха в цилиндре и массовый расход воздуха в цилиндре, соответственно. ASC (т.е. реверсивный или указанный, см. Таблицу 13.2) тепловой КПД любого двигателя внутреннего или внешнего сгорания теперь можно записать как
(ηT) ASC = (W˙out) reversibleQ˙in = (W˙1) outQ˙fuel = (W˙1) out / m˙aQ˙fuel / m˙a
, где Q˙in = Q˙fuel — теплотворная способность топлива.Объединение этих уравнений дает
mep = (ηT) ASC (Q˙fuel / m˙a) v2 − v1 = (ηT) ASC (Q˙fuel / m˙fuel) (A / F) (v2 − v1)
где A / F = m˙a / m˙fuel — соотношение воздух-топливо в двигателе. Теперь
v2 − v1 = v1 (v2 / v1−1) = RT1 (CR − 1) / p1
, поэтому уравнение. (13.32) становится
(13.34) (W˙1) out = (ηT) ASC (Q˙ / m˙) топливо (DNp1 / C) (A / F) (RT1) (CR − 1)
где D = n (V̶2 − V̶1) = π4 (Диаметр цилиндра) 2 × (Ход) × (Количество цилиндров) — общий рабочий объем поршня двигателя. Уравнение (13.34) позволяет нам определить выходную мощность идеального двигателя внутреннего сгорания без трения, и, когда доступны фактические данные динамометрических испытаний, уравнение.(13.33) позволяет определить механический КПД двигателя.
Пример 13.15
Шестицилиндровый четырехтактный двигатель внутреннего сгорания с циклом Отто имеет полный рабочий объем 260. в 3 и степень сжатия от 9,00 до 1. Он заправляется бензином с удельной теплотворной способностью 20,0 × 10 3 Btu / lbm и представляет собой впрыскиваемое топливо с массовым соотношением воздух-топливо от 16,0 до 1. Во время динамометрического испытания давление и температура на впуске оказались равными 8,00 psia и 60.0 ° F, в то время как двигатель выдавал 85,0 л.с. на торможении при 4000 об / мин. Для холодного ASC Отто с k = 1,40 определите
- a.
Холодный ASC тепловой КПД двигателя.
- б.
Максимальное давление и температура цикла.
- г.
Указанная выходная мощность двигателя.
- г.
КПД двигателя механический.
- e.
Фактический тепловой КПД двигателя.
Решение
- а.
Из уравнения. (13.30), используя k = 1,40 для холодного ASC,
(ηT) Ottocold ASC = 1 − CR1 − k = 1−9,00−0,40 = 0,585 = 58,5%
- b.
Из рисунка 13.48 a ,
Q˙H = Q˙fuel = (m˙cv) a (T1 − T4s) = m˙fuel (A / F) (cv) a (T1 − T4s)
и
T1 = Tmax = T4s + (Q˙ / m˙) топливо (A / F) масса (cv) a
Поскольку процесс с 3 по 4 с является изоэнтропическим, уравнение. (7.38) дает
T4s = T3CRk − 1 = (60,0 + 459.67) (9,00) 0,40 = 1250 R
Тогда
Tmax = 20,0 × 103 Btu / lbm топлива (16,0 lbm air / lbm fuel) [0,172 Btu / (lbm air · R)] + 1250 R = 8520 R
Поскольку процесс 4 с до 1 изохорический, уравнение состояния идеального газа дает
pmax = p1 = p4s (T1 / T4s)
, а поскольку процесс 3–4 с изоэнтропен,
T4s / T3 (p4s / p3) (k − 1) / k
или
p4s = p3 (T4s / T3) k / (k − 1) = (8,00 psia) (1250 R520 R) 1,40 / 0,40 = 172 psia
, тогда
pmax = (172 фунтов на кв. дюйм) [(8520 R) / 1250 R] = 1170 фунтов на квадратный дюйм
- c.
Уравнение (13.34) дает указанную мощность как
| W˙I | out = (0,585) (20,0 × 103 БТЕ / фунт) (260 дюймов3 / об) (4000 об / мин) (1170 фунт-сила / дюйм2) / 2 (16,0) [0,0685 БТЕ / (фунт · м · R)] (8520 R) (9,00-1) (12 дюймов / фут) (60 с / мин) = (132,00 ft⋅lbf / s) (1 л.с. 550 фут · фунт-сила / с) = 241 л.с.
- d.
Уравнение (13.33) дает механический КПД двигателя как
ηm = (W˙B) out (W˙I) out = 85,0 л.с. 241 л.с. = 0,353 = 35,3%
- e.
Наконец, фактический тепловой КПД двигателя может быть определен по формулам.(7.5) и (13.33) как
(ηT) Ottoactual = (W˙B) outQ˙fuel = (ηm) (W˙I) outQ˙fuel = (ηm) (ηT) Ottocold ASC = (0,353) (0,585 ) = 0,207 = 20,7%
Упражнения
- 43.
Если у двигателя с циклом Отто, описанного в примере 13.15, степень сжатия увеличится до 10,0: 1, какова будет его новая тепловая эффективность холодного ASC Отто? Предположим, что все остальные переменные остаются неизменными. Ответ : ( η T ) Отто холодный ASC = 60.2%.
- 44.
Найдите p max и T max для двигателя с циклом Отто, описанного в примере 13.15, когда степень сжатия снижается с 9,00 до 8,00 до 1. Предположим, что все остальные переменные остаются неизменными . Ответ : p max = 1040 psia и T max = 8460 R.
- 45.
Определите мощность, указанную в примере 13.15, если рабочий объем двигателя увеличился с 260.в 3 до 300. в 3 . Предположим, что все остальные переменные остаются неизменными. Ответ : (W˙I) из = 280. л.с.
- 46.
Определите механический КПД двигателя цикла Отто в Примере 13.15, если фактическая тормозная мощность составляет 88,0 л.с. вместо 85,0 л.с. Предположим, что все остальные переменные остаются неизменными. Ответ : η м = 36,3%.
Предыдущий пример показывает, что анализ холодного ASC Отто обычно предсказывает термический КПД, который намного превышает фактический тепловой КПД.Типичные двигатели с циклом Отто IC имеют фактический рабочий тепловой КПД в диапазоне 15-25%. Большая разница между тепловым КПД холодного АСК (который содержит по крайней мере один изоэнтропический процесс) и фактическим тепловым КПД обусловлена влиянием второго закона термодинамики за счет большого количества тепловых и механических необратимостей, присущих этому типу поршневого поршня. -цилиндровый двигатель. Для повышения фактического теплового КПД необходимо уменьшить тепловые потери при сгорании и количество движущихся частей в двигателе.
Какой двигатель внутреннего сгорания самый маленький?
Модель авиадвигателя Cox Tee Dee .010 (рис. 13.50) имеет самый маленький двигатель внутреннего сгорания, когда-либо производившийся в производстве. Этот удивительный маленький двигатель весит чуть меньше унции и работает со скоростью 30 000 об / мин. Топливо представляет собой 10–20% касторового масла плюс 20–30% нитрометана, смешанного с метанолом. С отверстием 0,237 дюйма (6,02 мм) и ходом 0,226 дюйма (5,74 мм) он имеет выходную мощность около 5 Вт.
Рисунок 13.50. Двигатель Cox Tee.
MGA With An Attitude ГОЛОВКА ЦИЛИНДРА для MGA 1600-MK-II — CH-100A Двигатель 1600-MK-II (1622 куб. См) существенно отличается от предшествующих двигателей 1500/1600. Коленчатый вал немного прочнее, с более толстыми перемычками и немного более узкими коренными подшипниками. Головка блока цилиндров имеет клапаны на один размер больше, расположение каналов немного лучше и камеру сгорания большего объема (43 куб. См против 38 куб. См у «15-дюймовой головки»).Голова обозначена цифрой «16» сверху сзади. Эти двигатели и головки немного редки, они использовались всего 14 месяцев производства в MGA. Некоторые двигатели начала 1622 года (около 300 единиц), по-видимому, были оснащены головками с маркировкой «15», но камеры сгорания были обработаны в соответствии с новыми спецификациями «16» с более крупными клапанами. Предполагается, что новые отливки головок «16» не были готовы к намеченной дате производства новой модели автомобиля 1600-MK-II, поэтому несколько сотен головок «15» были обработаны для соответствия головке «16». технические характеристики. Фотографии здесь взяты из двигателя начала 1622 года с головкой «15», обработанной до спецификации «16». Номер двигателя — 16GC-U-H-490. Клапаны, безусловно, имеют большие размеры. Камера сгорания была измельчена до большего размера, но невозможно сказать, оригинальна ли она или была сделана совсем недавно. Размер камеры сгорания составляет 3,27 дюйма от клапана до клапана. Толщина головки оригинальная 3,187 дюйма. Камера сгорания фрезерована, но не полностью фрезерована. Это все еще грубый кастинг, где он находится под номером 2, и в некоторых других областях.По сравнению с литой оригинальной головкой «16» размеры этой обработанной головки «15» идентичны. Обработанная головка «15» — — — — — Головка «16» в литом состоянии Приложение, 20 июля 2016 г. Вверху отливка № 12х532 с цифрой «15» наверху, январь 1961 г. Нам давно известно, что существовало несколько сотен двигателей начала 1622 года с механически обработанными головками «15».Тем не менее, это первое, что я видел изображение верхней поверхности, показывающее, что номер отливки головки «15» совпадает с номером отливки более поздних отливок головки «16». Возникает вопрос, как это могло произойти? Если я могу предположить, возможно, несколько сотен деталей новой детали были отлиты до того, как произошло изменение или окончательная доработка проектной спецификации. Из-за нехватки средств или времени, возможно, было разумно обработать первые детали для более поздних спецификаций, а не плавить их.Поскольку детали не были выпущены до окончательного изменения конструкции, а обработанные ранее детали будут функционально идентичны более поздним деталям, не было необходимости изменять номер отливки или номер окончательной обработанной детали. Это просто странное любопытство, что первые части могут иметь цифру «15» вверху, в то время как более поздние части имеют цифру «16» вверху, и у них тот же номер отливки. Теперь у меня есть небольшая проблема. Для всех, кто владеет головкой «15», обработанной в соответствии со спецификациями двигателя 1622 (камера объемом 43 куб. См и клапаны большего размера), не могли бы вы сообщить номер отливки и большое количество отливок наверху в задней части? Я хотел бы знать, все ли из первых 300 или около того обработанных головок имеют одинаковый номер литья.Это может быть способ определить, является ли головка частью заводского производства или обработанная головка может быть более поздней полевой модификацией по сравнению с более ранним номером отливки. Дополнение, 26 января 2017 г .: Дополнение, 19 января 2019 г .: |
Под кожей: почему четырехклапанные цилиндры лучше двух
Двигатели с четырьмя клапанами на цилиндр являются нормой в наши дни, а камеры сгорания головки блока цилиндров двигателя Aston Martin TM01, который мы исследовали здесь на прошлой неделе, выглядят так же, как и всегда. Бензоловые обычно соглашаются с тем, что четыре клапана на цилиндр — обычно открываемые двумя распредвалами, один для впуска и один для выпуска — лучше, чем два, но в чем преимущество?
Для выработки мощности двигатели
полагаются на то, чтобы в каждый цилиндр попадало как можно больше воздуха.Удивительно, но использование двух больших клапанов, одного для выпуска выхлопных газов и большого впускного клапана для впуска воздуха и топлива, — не лучший способ сделать это. Вы можете представить клапан в типичном двигателе как диск, прикрепленный к концу стержня, который закрывает отверстие в камере сгорания головки блока цилиндров. Когда клапан открывается, его дискообразная головка описывает стенки невидимого цилиндра, известного как «область завесы». Именно через эту область воздух поступает в двигатель или, в случае выпускных клапанов, для выхода газов.
Суммы и числа неожиданно показывают, что два клапана меньшего размера — скажем, вдвое меньше одного клапана — позволяют большему количеству воздуха поступать в двигатель? Мощность, которую производит двигатель, зависит от крутящего момента, генерируемого в каждом цикле сгорания, поэтому до определенного момента, чем быстрее двигатель вращается, тем больше мощности он производит. Но на высоких оборотах становится труднее получить достаточно воздуха достаточно быстро, и здесь два впускных клапана имеют преимущество перед одним.
Несколько клапанов также дают разработчикам больше возможностей для улучшения завихрения в камере сгорания, необходимого для смешивания топлива с воздухом, а меньшие компоненты легче, что является преимуществом, когда они должны двигаться быстрее.Недостатком является то, что четырехклапанная компоновка требует гораздо большего количества деталей и более сложной обработки, чем двухклапанная, а в те времена эта конструкция ограничивалась более экзотическими двигателями.
Идея не нова, она впервые появилась в автомобилях в начале 1900-х годов. Honda разделила разницу в 1970-х годах с помощью трехклапанных двигателей Civic — два впускных клапана на цилиндр и один выпускной — давая большую часть преимущества четырех клапанов, но используя только один распределительный вал для снижения стоимости.
В последнее время основное отличие заключается в прямом впрыске и установке инжектора в каждую камеру сгорания, а также свечи зажигания.В двигателях с прямым впрыском большая часть камеры сгорания находится в головке поршня для создания максимального завихрения и лучшего смешивания воздуха и топлива, но конструкция впускных каналов головки блока цилиндров все еще имеет значение.
Таким образом, хотя все современные двигатели обычно форсируются турбокомпрессорами, основы того, как двигатель дышит, по-прежнему играют важную роль. Aston заявляет, что он позволяет использовать различные методы впрыска для TM01, включая впрыск через порт. Это может означать версию только с прямым впрыском, а не комбинированную прямую и портовую инъекцию, которую мы видели на изображениях прототипа.