Как отрегулировать обороты холостого хода на инжекторе и карбюраторе
Бензиновые двигатели могут быть оборудованы карбюраторной или инжекторной системой топливоподачи. В случае с карбюратором хорошо известно, что в процессе эксплуатации данной системе необходима периодическая регулировка холостых оборотов. Что касается инжектора, такая система питания работает под управлением ЭБУ, то есть исключается необходимость дополнительной настройки.
Однако на практике ситуация несколько иная, так как достаточно часто возникает необходимость отрегулировать обороты холостого хода на инжекторе. Неполадки проявляются в виде неустойчивой работы ДВС на холостом ходу, обороты плавают, двигатель может глохнуть после запуска, перерасходовать топливо в случае завышенных оборотов ХХ и т.п.
Далее мы поговорим о том, как осуществляется регулировка оборотов холостого хода двигателя на инжекторном и карбюраторном двигателе, а также рассмотрим особенности и нюансы выставления холостых оборотов на моторах с указанными системами подачи топлива.
Содержание статьи
Как отрегулировать обороты холостого хода на карбюраторе
Начнем с более простой дозирующей системы. Главным плюсом карбюратора заслуженно считается возможность быстрого обслуживания устройства своими руками, используя при этом минимальный набор подручных инструментов.
Для регулировки холостых оборотов в этом случае потребуется иметь несколько ключей и отверток. Главной задачей будет выставление таких оборотов, когда двигатель способен стабильно работать, при этом частота вращения коленвала будет минимально возможной для устойчивой работы агрегата.
Давайте рассмотрим регулировку на примере карбюратора Солекс. Прежде всего, желательно иметь тахометр, который поможет определить частоту вращения коленвала. На некоторых автомобилях такое устройство может отсутствовать конструктивно, тогда как на других входит в штатную комплектацию и находится на приборной панели.
Если тахометра нет, лучше всего подключить отдельный прибор, что позволит наиболее точно выставлять обороты. В некоторых случаях можно выставить холостой ход и без тахометра, ориентируясь только на работу ДВС в этом режиме по внешним признакам. Минусом можно считать то, что обычно не удается выставить ХХ максимально точно. Также для настройки потребуется иметь плоскую отвертку. Отвертка будет нужна для того, чтобы крутить винт качества топливной смеси.
- Итак, перед началом манипуляций с карбюратором двигатель необходимо прогреть до рабочей температуры.
- Затем нужно до упора утопить «подсос», воздушная заслонка должна находиться в полностью открытом положении.
- Далее двигатель глушится, после чего на машинах без тахометра следует произвести подключение внешнего устройства согласно инструкции и рекомендациям.
В некоторых случаях можно использовать мультиметр-тестер. Плюсовой выход подключается к выходу К на катушке зажигания, минусовой присоединяется на массу.
- Теперь двигатель можно завести, после чего нужно включить габариты, дальний свет, выставить максимальные обороты вентилятора внутрисалонного отопителя, электрообогрев стекол и т.д. Другими словами, необходимо задействовать энергопотребители. После этого можно переходить к настройке холостого хода на карбюраторе.
Как правило, для большинства систем данного типа число холостых оборотов составляет 750 — 800 об/мин. Получается, необходимо выставить холостой ход в заданных рамках, причем ДВС должен работать устойчиво.
Для этого на Солекс нужно вращать регулировочный винт, отвечающий за количество топливно-воздушной смеси. По окончании коленвал должен вращаться с частотой 750 — 800 об/мин. Однако во многих случаях на этом регулировка не заканчивается.
Дело в том, что если регулировать ХХ только винтом количества смеси, тогда в ряде случаев не получается выставить нужные обороты. По этой причине дополнительно нужна подстройка винта качества смеси.
На указанном винте может стоять отдельная заглушка из пластика, которую понадобиться снять. Сделать это можно путем прокола заглушки шилом, после чего в отверстие просовывается металлический крючок для извлечения. Также можно ввинтить в заглушку саморез, после чего без особых затруднений вытащить элемент.
Перед началом регулировок ХХ винтом качества также следует проверить правильность выставления зажигания (момент зажигания, УОЗ), состояние свечей зажигания и свечных бронепроводов. Также понадобится исключить вероятность стороннего подсоса воздуха. Параллельно нужно быть готовым к тому, что регулировки потребуется повторять несколько раз до получения необходимого результата.
Весь процесс выглядит следующим образом:
- В самом начале следует вращать винт качества плоской отверткой так, чтобы обороты коленвала возрастали до максимума. Для этого необходимо крутить винт аккуратно по часовой стрелке или против часовой стрелки. Главное, найти такое положение винта, кода обороты ХХ максимальны. Это можно определить по тахометру или ориентироваться по слуху (при отсутствии приборов для определения частоты вращения коленвала).
- Теперь можно начинать крутить винт количества смеси, добиваясь того, чтобы обороты находились на отметке 900 об/мин. Закручивание винта по часовой стрелке приводит к тому, что дроссельная заслонка первой камеры карбюратора приоткрывается, в результате обороты двигателя растут.
Если же винт выкручивать против часовой стрелки, тогда заслонка прикрывается, обороты будут уменьшаться. Получается, необходимо найти такое положение регулировочного винта количества смеси, при котором обороты находятся на отметке 900 об/мин.
- Выставив обороты, переходим к винту качества. Указанный винт закручивается так, чтобы получить 750-800 об/мин. Если сразу не удалось добиться нужного показателя, следует повторить процедуру настройки с самого начала.
Добавим, что при установке нештатного карбюратора на двигатель или в случае ремонта карбюратора (прочистка, замена винтов, жиклеров) перед началом регулировок следует сначала полностью закрутить винт качества по часовой стрелке, после чего отпустить его обратно на 3 или 4 оборота. Только после этого можно переходить к дальнейшим настройкам.
Дополнительные рекомендации по настройке ХХ на карбюраторе
После того, как процесс настройки был окончен, следует проверить работу двигателя не только на ХХ, но и с учетом других режимов. Это значит, что набор оборотов при резком или плавном нажатии на педаль газа должен происходить ровно, без сбоев и провалов. Также двигатель не должен глохнуть после того, как педаль акселератора резко отпустить.
Любые провалы или паузы являются поводом к тому, чтобы повторить настройки. Первым делом следует вернуться к регулировке качества смеси, обогащая смесь винтом качества. При таком обогащении можно поднять обороты до отметки 900 об/мин. Стоит отметить, что качественная и точная настройка позволяет снизить общую токсичность выхлопных газов карбюраторного ДВС.
Рекомендуем также прочитать статью о том, как полностью отрегулировать карбюратор Солекс. Из этой статьи вы узнаете об особенностях регулировок указанной модели карбюратора, подборе жиклеров, регулировках ускорительного насоса, переходных режимах, настройке второй камеры и т.д.
В ряде случаев возникает ситуация, когда винтами качества и количества смеси не удается отрегулировать холостые обороты (нет явной четкой реакции двигателя на вращение винтов или же указанные реакции вовсе отсутствуют). Это указывает на проблему, когда горючее попадает в камеру карбюратора и двигатель работает, но поступление смеси происходит не через систему холостого хода.
Такая неполадка может возникать в том случае, когда электромагнитный клапан карбюратора закручен не до конца. Также может быть недостаточно надежно установлена заглушка указанного клапана. В результате горючее проходит мимо жиклера холостого хода, который установлен в данном клапане или его заглушке. Еще жиклер ХХ может быть подобран неправильно, иметь слишком большое отверстие и т.п.
Чтобы это проверить, понадобится на работающем моторе отключить провод от электромагнитного клапана. В норме двигатель должен глохнуть. Если этого не происходит и мотор дальше работает, тогда в диагностике нуждается сам клапан. Если проблем с клапаном не выявлено, тогда потребуется выставить уровень топлива в поплавковой камере, а также проверить игольчатый клапан. Затем настройку карбюратора следует повторить.
Также отметим, что иногда добиться правильной работы на всех режимах мотора все равно не удается. Другими словами, после выставления холостых оборотов проблемы начинаются на переходных режимах, при резких ускорениях и т.п. В этом случае может понадобиться доработка или тюнинг карбюратора. Иногда проблему удается решить только заменой дозирующего устройства на более подходящий или исправный аналог.
Регулировка инжекторного двигателя и холостой ход
На моторах с инжекторной системой подачи топлива, как правило, неисправности проявляются не сразу и имеют свойство постепенно прогрессировать. Обычно водитель замечает, что машина начинает с задержками реагировать на педаль газа, обороты скачут на холостом ходу, увеличивается расход бензина, двигатель теряет мощность, силовой агрегат может не ровно работать на разных режимах и т.д.
К таким симптомам могут приводить различные неисправности, так что необходимо проводить компьютерную диагностику двигателя, проверять датчики ЭСУД, исключить подсос воздуха и общие проблемы смесеобразования (бедная и богатая смесь), загрязнение форсунок и другие причины. В том случае, когда других отклонений не выявлено, необходима регулировка инжектора. Начнем с регулировки холостого хода на инжекторном двигателе.
Прежде всего, нужно начинать с проверки регулятора холостого хода (РХХ). Такой регулятор является шаговым электродвигателем со специальной конусной иглой. Задачей РХХ является регулировка подачи воздуха поду правлением ЭБУ для поддержания холостых оборотов. Неисправности РХХ становятся частой причиной плавающих оборотов мотора на холостом ходу.
Для регулировки холостого хода на инжекторе следует:
- отключить клеммы АКБ и произвести демонтаж регулятора холостого хода;
- затем производится очистка установочного отверстия РХХ при помощи сжатого воздуха;
- теперь можно разобрать регулятор ХХ, после чего проводится проверка его направляющей втулки.
Если втулка изношена, элемент нужно менять;
- также нужно проверить иглу. Не допускается наличие выработки, повреждений или других дефектов. При обнаружении отклонений иглу РХХ следует заменить;
- далее при помощи тестера проверяются обмотки регулятора, при необходимости очищаются контакты;
- по окончании процесса диагностики и очистки устройство ставится обратно, после чего оценивается работа двигателя на холостом ходу и других режимах.
Добавим, что ряд проблем с холостым ходом может возникнуть и после чистки дроссельной заслонки, которую на многих автомобилях нужно не только правильно чистить, но еще и обучать. Если вы не знаете, как почистить и отрегулировать дроссельную заслонку, рекомендуем прочитать об этом в нашей отдельной статье.
Также отметим, что на регулировки инжектора и работу системы питания можно влиять программно, то есть подключая диагностическое оборудование со специальными предустановленными программами к ЭСУД через OBD разъем. После подключения можно оценить многие параметры работы систем двигателя в режиме реального времени, считать, расшифровать и сбросить возможные ошибки.
На инжекторе возможны и более глубокие доработки, которые предполагают внесение ряда изменений в прошивку ЭБУ. Данная процедура хорошо известна под названием чип-тюнинг двигателя. Такая настройка позволяет изменить заводскую прошивку, адаптировать блок управления под конкретного водителя и его нужды (выставить обороты ХХ, изменить топливные карты и повлиять на смесеобразование, зажигание и т.д.).
Что в итоге
Как видно, самостоятельные доработки и настройки карбюратора вполне возможны в условиях гаража. Что касается инжектора, своими руками рядовой автовладелец без достаточного опыта может только проверить РХХ и произвести очистку устройства, осуществить диагностику некоторых датчиков ЭСУД, а также считать и сбросить ошибки при наличии адаптера OBD2.
Важно понимать, что инжектор изначально не предполагает каких-либо вмешательств и дополнительных настроек, то есть любые сбои в работе системы являются следствием каких-либо неисправностей. При этом возможность настраивать инжекторный впрыск есть, но такие действия потребуют специальных программ, оборудования и опыта.
Учтите, любые попытки непрофессионального вмешательства в прошивку ЭБУ могут привести как к выходу контроллера из строя, так и к последствиям для самого двигателя. По этой причине проводить регулировку и настройку инжектора следует только в особых случаях, доверяя работу исключительно квалифицированным специалистам.
Читайте также
Режим холостого хода инжекторного двигателя
Для эффективной диагностики причин неустойчивого холостого хода необходимо иметь представление как двигатель автомобиля работает на этом режиме. Инжекторный двигатель не имеет системы холостого хода как карбюраторный.
За поддержание оборотов холостого хода на необходимом уровне отвечает ЭСУД (электронная система управления двигателем). Блок управления (ЭБУ) ЭСУД на основе данных полученных от различных датчиков определяет величину и продолжительность впрыска топлива форсунками на режиме холостого хода, управляет регулятором ХХ, а так же выставляет нужный угол опережения зажигания, необходимый для поддержания определенной частоты вращения коленчатого вала.
Порядок работы инжекторного двигателя в режиме холостого хода на примере двигателя 2111 автомобилей ВАЗ 21083, 21093, 21099
— До включения зажигания шток регулятора холостого хода (РХХ) максимально выдвинут и полностью перекрывает сечение байпасного (воздушного) канала в дроссельном узле.
— После поворота ключа в замке зажигания ЭБУ определяет температуру охлаждающей жидкости (сигнал с датчика температуры — ДТ), определяет, что дроссельная заслонка полностью закрыта (сигнал с датчика положения дроссельной заслонки ДПДЗ), стоит автомобиль или едет (сигнал с датчика скорости — ДС).
На основе полученных данных вычисляется такое положение штока регулятора холостого хода, при котором он приоткрывает байпасный канал на определенный просвет, чем обеспечивается приток воздуха необходимого для работы двигателя на холостом ходу.
— После пуска двигателя блок управления получает информацию от датчика положения коленчатого вала (ДПКВ) о его вращении, с датчика температуры о температуре ОЖ, датчика положения дроссельной заслонки о том, что заслонка закрыта, с датчика массового расхода воздуха (ДМРВ) о объеме воздуха поступающего в двигатель, с датчика скорости о том стоит автомобиль или двигается.
На основе полученных данных блок управления устанавливает шток РХХ в положение, обеспечивающее оптимальный просвет воздушного канала под дроссельную заслонку. Тем самым обеспечивается приток в цилиндры двигателя воздуха необходимого для поддержания минимальных устойчивых оборотов. Помимо этого определяет продолжительность и величину впрыска топлива через форсунки, определяет угол опережения зажигания.
По мере прогрева, температура двигателя растет, датчик температуры сигнализирует об этом блоку управления и тот перемещает шток регулятора холостого хода, уменьшая просвет воздушного канала. Величина и продолжительность впрыска уменьшаются, угол опережения зажигания изменяется. Обороты коленчатого вала постепенно падают до 650-750 об/мин.
Если запускается и работает на холостых прогретый двигатель, то аналогичным образом на основе данных полученных от датчиков блок управления выставляет шток регулятора в нужное положение.
В системах с обратной связью величина и продолжительность впрыска, и угол опережения зажигания рассчитываются с учетом показаний датчика кислорода (бедная-богатая смесь). На холодном двигателе датчик кислорода не работает, показания с него начинают сниматься по мере прогрева двигателя.
При нажатии на педаль «газа» дроссельная заслонка приоткрывается, сигнал об этом ДПДЗ поступает на блок управления. Режим холостого хода двигателя прекращается. Шток регулятора выставляется в такое положение, чтобы при внезапном закрытии дроссельной заслонки быстро обеспечить приток дополнительного воздуха в двигатель через воздушный канал и предотвратить «провал» в его работе.
Если автомобиль движется с включенной передачей и полностью закрытой дроссельной заслонкой (под горку, на ровном участке, при торможении двигателем, во время переключения передач) ЭБУ переводит систему в режим принудительного холостого хода (ПХХ) (топливо в двигатель не поступает, он работает по инерции).
Примечания и дополнения
— Холостой ход двигателя автомобиля – это работа на низких оборотах (650-750 для инжекторных ВАЗ 21083, 21093, 21099) с полностью закрытой дроссельной заслонкой.
— В случае неисправности РХХ стоит провести проверку его электрической части.
Еще статьи по инжектору ВАЗ
— Порядок работы системы впрыска инжекторного двигателя автомобилей ВАЗ 2108, 2109, 21099
— Схема ЭСУД ВАЗ 2108, 2109, 21099, нормы Евро-2
— Модуль зажигания инжекторного двигателя автомобилей ВАЗ 2108, 2109, 21099
— Топливный фильтр системы питания инжекторного двигателя автомобилей ВАЗ 2108, 2109, 21099
— Применяемость контроллеров (ЭБУ) на инжекторных двигателях автомобилей ВАЗ 2108, 2109, 21099
Уточняем как отрегулировать холостой ход на ВАЗ 2114
Каждый автолюбитель с большим опытом вождения помнит о том, когда российские дороги был заполнены Жигулями и Москвичами. Эти автомобили отличались тем, что отремонтировать их мог практически каждый автолюбитель самостоятельно.
ВАЗ 2114 — это тоже достаточно простой автомобиль, если речь идёт о ремонте. Справиться с устранением неисправностей на этой машине под силу любому автолюбителю, который хотя бы немного разбирается в машинах.
Практически все ключевые элементы этого авто можно отрегулировать механическим способом, однако некоторые части автомобиля не получится отремонтировать «дедовским методом».
Как поднять обороты холостого хода на инжекторе ВАЗ 2114
Низкие обороты ваз 2114 можно отрегулировать при помощи специального датчика для холостого хода, хотя в современном ВАЗе уже не так просто отрегулировать холостой ход, как это было раньше. Для того, чтобы разобраться во всех нюансах, следует изучить строение некоторых элементов автомобиля.
Обороты холостого хода ваз 2114
Из чего состоит инжектор
Инжектор на этом автомобиле состоит не из одной части, а представляет собой сложную конструкцию, включающую:
- датчики;
- ЭБУ;
- форсунки.
Регулировка оборотов холостого хода
Каждая из частей инжектора выполняет определённую функцию, поэтому даже если из строя вышли какие-либо датчики, функционирование автомобиля может быть серьёзно нарушено. Для того, чтобы исправить положение, может потребоваться помощь квалифицированного мастера.
Датчики
Сегодня используются различные технологии и методы для того, чтобы подавать топливо в ВАЗ 2114. Контроль за этим процессом осуществляется при помощи датчиков. Кроме того, автомобиль оборудован дополнительными системами слежения, позволяющими определить косвенные причины его перерасхода.
Самыми популярными из них можно назвать следующие:
- Датчики кислорода.
- Датчики коленвала.
- Датчики ПДЗ.
- Датчики детонации и некоторые другие.
Как отрегулировать холостой ход на ваз 2114 инжектор
Для того, чтобы успешно справиться с этой задачей, следует убедиться в исправности регулятора для холостого хода. Какие обороты двигателя должны быть на холостом ходу ваз 2114?
Самое главное, они не должны плавать. Это одно из основных условий. В ситуации, когда возникают плавающие обороты двигателя или нарушается нормальное функционирование мотора в момент, когда водитель поставил машину на «нейтралку», следует задуматься о причинах неисправности.
В некоторых случаях происходит повышение оборотов в то время, когда двигатель полностью прогрет. Всё это свидетельствует о проблемах, связанных с работой регулятора холостого хода. Также причина может заключаться и в бедной смеси.
Ещё одна неисправность, которая может являться следствием неправильной работы регулятора, — это слишком низкие обороты на ещё недостаточном прогретом моторе.
Датчик РХХ
Причина неисправности часто заключается в слишком большой подаче воздуха.
Для того, чтобы провести регулировку, потребуется компьютер, способный собрать данные от самых разнообразных датчиков, установленных на автомобиле. Сделать это вручную невозможно. Это означает, что обойтись своими силами не получится. Для ремонта в обязательном порядке требуется наличие специального оборудования.
Дополнительная информация.Как можно сэкономить на ремонте? Для того, чтобы регулировка не обошлась в слишком большую сумму, можно поискать частного механика, который обладает необходимым оборудованием для ремонта.
С помощью компьютера можно открыть тот либо иной клапан. Сделать это иначе практически невозможно. Ни в коем случае не стоит пытаться открыть клапан вручную, ведь это может быть опасно не только для вашего здоровья, но и для автомобиля, который окончательно выйдет из строя в случае неправильного ремонта.
Открывать клапан с помощью компьютера необходимо только с определённой величиной. Если не соблюдать данный показатель, то провести регулировку также не получится.
Регулировка РХХ при помощи компьютера
Правила ремонта
Регулятор холостого хода представляет собой специальный орган исполнительного назначения, который необходим для функционирования двигателя в нормальном режиме. Если он окажется неисправен, то не будет гореть индикатор, который указывается на эту неисправность. Это означает, что определить проблему может быть достаточно просто. Остаётся только устранить её как можно скорее.
Регулятор — это шаговый электродвигатель, дающий возможность гарантировать определённый уровень потока воздуха, который обходит закрытую заслонку.
Уровень потока задаётся электроникой автомобиля. Столь сложная система позволяет работать мотору работать максимально равномерно и стабильно. Также электронная система машины выполняет функцию по защите от внешних факторов, ведь двигатель функционирует в штатном режиме практически при любых обстоятельствах.
У ВАЗ 2114 низкие обороты на холостом ходу
Что же необходимо сделать, чтобы отрегулировать работу столь важной части автомобиля?
- Первое, что следует сделать, так это выключить аккумулятор. Некоторые водители считают, что достаточно отключить зажигание, однако на самом деле это не так. Нужно отключить так называемую «массу».
- Когда это будет сделано, необходимо перейти к отвинчиванию креплений, удерживающих регулятор. Подобным образом можно полностью снять его. Это не составит труда, если делать всё аккуратно и без спешки. Некоторые модели отличаются одной неприятной особенностью. Дело в том, что у них винты заливают особой краской. Иногда их и вовсе рассверливают. В таком случае придётся заняться полным демонтажем корпуса заслонки. Когда это будет сделано, можно заняться разборкой регулятора, а также снять его.
Регулятор холостого хода
- Теперь пришёл черёд чистить посадочный канал. Можно просто промыть его, а потом обработать с помощью мощного потока воздуха. Для этого подойдёт баллончик с газом или простейший компрессор. Разбирать регулятор следует очень аккуратно, иначе возможны любые неприятные последствия. Например, можно запросто повредить обмотку. После этого нужно заняться проверкой втулки. Если что-то не так, то её лучше заменить на новую.
- Следующий шаг — определить целостность, которая характерна для пружины. Для этого можно воспользоваться специальным прибором для измерений. Не будет лишним почистить контакты обмотки. Только после этого можно заняться сбором регулятора холостого хода, однако в самом начале надо измерить расстояние от конусной иглы до фланца. Оно должно равняться 23 мм.
Если расстояние другое, то необходимо поменять иглу.
- Последний этап — это установка регулятора на место, где он находился до того, как был снят с автомобиля. Он имеет собственное посадочное место. Туда его и нужно вернуть. Делать это нужно максимально осторожно. После того, как регулятор окажется на своём месте, к нему нужно подключить штекер. Сделать это можно самостоятельно.
Теперь пришёл черёд включить электропитание. Двигатель следует завести. Если исправить проблемы так и не получилось, то придётся разбирать регулятор второй раз. Если же и следующая попытка окажется неудачной, то водителю следует порекомендовать перепрошить бортовой компьютер.
Это может быть актуально для тех, кто приобретал автомобиль на вторичном рынке, однако перепрошивка — это крайняя мера. Обычно всем автовладельцам достаточно разобрать регулятор и отремонтировать его.
Почему плавают обороты на холостом ходу ВАЗ 2109 карбюратор, инжектор
Рано или поздно, почти любой водитель обязательно столкнется с такой проблемой. Когда плавают обороты на холостом ходу, довольно сложно эксплуатировать автомобиль. На светофоре он может заглохнуть или подвести на спуске с применением нейтральной передачи. Периодически приходится «помогать» двигателю, нажимая на педаль газа, чтобы автомобиль не заглох. Стрелка тахометра то и дело показывает разные обороты (от 500 до 1200). Кроме того, тряска двигателя докучает водителю и пассажирам, а малое число оборотов значительно снижает ресурс мотора. Сегодня вы узнаете о самых распространенных причинах неустойчивой работы двигателя на холостом ходу и способах устранения данной проблемы.
Успешное решение этой непростой проблемы абсолютно не возможно без постановки верного «диагноза», а, следовательно, автолюбитель должен прекрасно знать полный перечень «симптомов», свидетельствующих о некорректной работе карбюратора:
- Самостоятельное падение и рост оборотов двигателя.
- Пропуски в работе цилиндров.
- Возникновение резких «хлопков» в районе карбюратора или глушителя.
- Нестабильное количество оборотов двигателя в режиме «холостого хода».
Причины нестабильности работы карбюратора ВАЗ 2109 (21099)
Ярким свидетельством актуальности проблемы, характеризующейся нестабильностью оборотов двигателя в режиме «холостого хода», являются частые упоминания о ней в специальных печатных изданиях и интернетовских форумах. Особенно широкое обсуждение данного вопроса ведется среди владельцев отечественных «ВАЗ 2109» и «ВАЗ 21099». В статье, предлагаемой вашему вниманию, предлагается рассмотреть причины, способствующие возникновению ситуации, при которой у «ВАЗ 21099» (карбюратор) плавают обороты, а также пути и способы их (причин) устранения.
Основными причинами, наличие которых обуславливает у «ВАЗ 2109» (карбюратор) провалы в работе силового агрегата, являются:
- Неправильно выполненная регулировка карбюратора. Как правило, положение винтов, регулирующих «качество» смеси, обеспечивает подачу в систему «обедненную» горючую смесь. Способ устранения – регулировка карбюратора, подробная технология выполнения которой будет рассмотрена ниже.
- Неисправность электромагнитного клапана с блоком управления, прекращающего подачу топлива при достижении коленвалом 2100 об/мин и возобновляющего ее (подачу) при падении числа оборотов до 1900. Проверка работоспособности осуществляется быстрым снятием и надеванием провода на клапан во время работы двигателя. Щелчок, произведенный клапаном, свидетельствует о его исправном состоянии.
- Загрязнение жиклеров и каналов системы «холостого хода». Устраняется посредством специального очистителя с последующей продувкой сжатым воздухом.
- Попадание излишнего воздуха в топливную смесь в результате нарушений герметичности соединений. В первую очередь, это касается целостности патрубка, соединяющего вакуумный тормозной усилитель с впускным коллектором.
- Неисправность игольчатого клапана, обуславливающая повышение (понижение) уровня топлива в поплавковой камере. В некоторых случаях проблема может быть решена посредством чистки клапана, однако подавляющее большинство специалистов рекомендуют заменить «залипающий» игольчатый клапан новым.
Видео — Почему плавают обороты двигателя на холостом ходу
Возникновение вышеперечисленных неисправностей является следствием нарушений эксплуатационных условий, определенных заводом-изготовителем, или негативного воздействия внешних климатических факторов: повышенная влажность, аномально высокие (низкие) значение температуры или ее резкие колебания.
Кроме того, необходимо учитывать, что причиной некорректного функционирования карбюратора «девятки» могут быть неисправности системы питания автомобиля, системы зажигания или засорение воздушного фильтра.
В зависимости от типа двигателя ВАЗ, существуют и разные виды причин. Начнем с карбюраторных автомобилей советского и российского производства ВАЗ 2107 и ВАЗ 2109.
В ситуации, когда причиной того, что у «ВАЗ 21099» (карбюратор) плавают обороты, становится его (карбюратора) неправильная регулировка подавляющее большинство автолюбителей, особенно обладающих небольшим практическим опытом, предпочитают воспользоваться услугами профессиональных автомехаников. Однако можно выполнить данную операцию и самостоятельно, воспользовавшись инструкцией, представленной ниже. В качестве примера рассмотрим технологию регулировки режима «холостого хода» карбюратора «Solex», как наиболее распространенного на моделях «ВАЗ 2109» и «ВАЗ 21099».
Объектами настройки являются винты, регулирующие «количество» (рисунок 1, позиция 1) и «качество» (рисунок 1, позиция 2) горючей смеси, а в качестве рабочего инструмента используется отвертка, имеющая плоское жало и внешний тахометр, обеспечивающий удобство снятия показаний.
Рисунок 1
Регулировка холостого хода на карбюраторном двигателе ВАЗ
Дело в том, что когда в карбюратор попадает воздуха намного больше, чем бензина, смесь становится бедной. Топливо в малом количестве сгорает в цилиндрах, а соответственно, в камере сгорания не возникает соответствующего давления, в связи с чем, двигатель начинает глохнуть. Такие настройки сбиваются в процессе длительной эксплуатации автомобиля. Достаточно просто немного выкрутить болт холостого хода и число оборотов сразу же выровняется.
Второй момент заключается в слишком обогащенной смеси, когда бензина поступает намного больше, чем топлива. Обычно, об этом свидетельствуют характерные прострелы в глушителе (несгоревший бензин воспламеняется в выхлопной системе) при попытке нажать на педаль газа и сравнять обороты. В большинстве случаев, двигатель глохнет, а запустить его после такого становится настоящей проблемой. В этом случае, необходимо провести более серьезную настройку карбюратора, а именно, закрутить все болты до упора и выкрутить в соответствии с руководством по эксплуатации. Топливная смесь должна сравняться и двигатель начнет успешно выдерживать обороты холостого хода.
Другая неисправность характерна для современных карбюраторов, снабженных электромагнитным клапаном. Данное устройство уже давно трепет нервы многим автовладельцам из-за своей неправильной работы. Дело в том, что плохой контакт на клапане может серьезно повлиять на устойчивость оборотов и автомобиль можно эксплуатировать только на подсосе.
В первую очередь, необходимо проверить плотность посадки клапана и закрутить его, если он случайно выкрутился. Провод электромагнитного клапана должен быть целым, а место контактного соединения достаточно чистым. Если ничего не помогает, попробуйте включить и выключить зажигания, клапан должен издавать характерные щелчки. Если этого не происходит, замените его.
- Регулировка поплавковой камеры тоже может повлиять на работу узла. Запустите двигатель и заглушите, после — проверьте уровень бензина в камере. В нормальном состоянии, поплавковая камера должна быть занята бензином только наполовину. Если это не так, то подогните рычаг поплавка в соответствующую сторону, соберите карбюратор и повторите процедуру до того момента, пока не достигнете нормируемых значений.
Если вышеописанные инструкции не помогают, то самое время задуматься о чистке и ремонте карбюратора. Чтобы сэкономить на покупке ремонтного комплекта, можно полностью разобрать узел и погрузить все его рабочие части в ацетон. После этого, необходимо тщательно протереть его сухой тряпкой, а жиклеры прочистить тонким предметом. По возможности, проверьте размер жиклеров, установленных на вашем карбюраторе. Если они не соответствуют нормам, то жиклеры необходимо заменить. Теперь соберите карбюратор и проведите его регулировку.
Итак, приступаем:
- В перечень подготовительных мероприятий включаем проверки правильности установки зажигания и прогрев двигателя автомобиля до температуры 900С.
- Снимаем показания тахометра.
- При помощи отвертки начинаем регулировку.
Внимание! Для удобства подсчета оборотов винта нанесите на ручку отвертки метку.
- Заворачиваем винт №1 по часовой стрелке до упора. Двигатель автомобиля должен заглохнуть, поскольку подача топливной смеси прекращена. Делаем два оборота в обратном направлении и запускаем силовую установку. Если запуск не произошел, делаем еще один оборот винта №1 в том же направлении.
- Далее выкручиваем винт до момента прекращения роста оборотов коленчатого вала, после чего отворачиваем винт еще на один оборот. При помощи внешнего тахометра контролируем количество оборотов. Если оно остается неизменным, возвращаем винт в точку прекращения роста оборотов двигателя, то есть на один оборот винта.
- Показание тахометра не должно превышать 1020 об/мин. Если это не так, то возникает необходимость повторных манипуляций винтом №1, регулирующим «качество» топливной смеси. Вращение винта против часовой стрелки позволяет уменьшить число оборотов.
- Установив обороты двигателя на уровне 1020 об/мин, начинаем манипуляции винтом №2, регулирующим «качество» топливной смеси. Вращая его по ходу часовой стрелки, добиваемся снижения количества оборотов коленвала до 850 об/мин.
Внимание! Данный показатель оборотов в режиме «холостого хода» будет сохраняться только на прогретом силовом агрегате. Поэтому, автолюбителям, не привыкшим к длительным «прогреваниям» двигателя, рекомендуем увеличить этот показатель до 900 об/мин.
В заключение приведем два способа, позволяющие нормализовать обороты двигателя в режиме «холостого хода» при отсутствии желания или возможности выполнения описанных выше регулировочных операций.
- Как правило, при использовании отечественного бензина марки АИ-92 зажигание выставляется по метке +40. Выкрутив винт «качества» на четыре оборота, число оборотов «холостого хода» ставим на «ход».
- Любители «быстрого старта» и приверженцы бензина марки АИ-95 нередко выставляют угол опережения зажигания на отметку +60. В этом случае винт, регулирующий качества горючей смеси отпускаем на пять оборотов.
Эти несложные настройки, конечно, не являются панацеей в ситуации, когда в автомобиле «ВАЗ 2019» (карбюратор) провалы и нестабильность оборотов – повседневная реальность. Тем не менее, они способны частично решить проблему при обстоятельствах, не располагающих к выполнению регулировочного процесса.
Плавают обороты ХХ на ВАЗ инжектор
Здесь имеют место быть разные причины, как неправильная работа контроллера, так и работа форсунок. Чтобы знать точно о характере неисправности, проще всего, провести электронную диагностику всех систем и по коду ошибки определить причину неисправности. В этот список могут входить следующие элементы.
- Форсунка сильно загрязнена или протекает. Загрязнение форсунки возникает при использовании некачественного топлива или доведения двигателя до топливного голодания, когда бензиновый насос качает не бензин, а его остатки на дне топливного бака. В этом случае, используют специальные присадки, которые прочищают деталь в процессе работы двигателя.
Если же форсунки протекают, то их необходимо заменить. Это связано с ухудшением качества уплотнительных прокладок, установленных внутри элемента, что нарушает герметичность системы и допускает попадание топлива в камеру сгорания в излишнем количестве.
Внимание! Протекание форсунок может переполнить топливную камеру и стать причиной повышенного давления в цилиндре (гидравлического удара). Данное явление может негативно сказаться на внутренних деталях двигателя.
Другая проблема может коснуться датчика (регулятора) холостого хода, который выходит из строя и дает неправильную команду на число оборотов коленчатого вала. В результате, двигатель работает с перебоями, возможно даже, глохнет. Кстати, датчик холостого хода не единственное электрическое устройство, влияющее на стабильность работы мотора. Среди прочих можно отметить как датчик массового расхода воздуха и многие другие устройства, информация с которых больше не поступает на ЭБУ. Контроллер, не имея нужной информации, может перевести двигатель в аварийный режим (Check Engine).
Проблемы характерные для обоих типов двигателя
Эти неисправности можно отнести как к инжекторному, так и к карбюраторному двигателю, так как они случаются на обеих силовых установках.
- Загрязненный воздушный фильтр. Если фильтр очистки воздуха достаточно сильно загрязнен, то воздух начинает поступать в достаточно малых количествах, что приводит к кислородному голоданию. В этом случае, необходимо заменить фильтрующий элемент и продолжить эксплуатацию автомобиля.
- Неисправность системы зажигания. В первую очередь, проверяют наличие искры на высоковольтных проводах и свечах зажигания. Для этого нужно два человека. Первый крутит двигатель с помощью стартера, а второй проверяет наличие искры. Свеча зажигания выкручивается, и снова вставляется в провод. Напарник прислоняет конец свечи к блоку цилиндров на расстояние, примерно, 5-10 миллиметров. Если в процессе вращения двигателя, искра не появилась, необходимо проверить исправность свечи или бронепровода. Отсутствие искры на всех свечах и бронепроводах свидетельствует о неисправности модуля зажигания или катушки. Элемент подвергают замене, а свечи очищают от появившегося нагара.
Если искры не было, то бронепровод прислоняют не к ГБЦ, а к самой свече, прикрученной к блоку. Если искра появилась, то можно с уверенностью сказать, что свеча неисправна.
Внимание! При проверке искры нельзя держаться за корпус автомобиля, так как можно получить удар электрическим током в 40 тысяч вольт. Данное напряжение не является смертельным, при низкой силе тока, однако ничего приятного в этом нет. Кроме того, не используйте длительное искрообразование, так как есть шанс испортить модуль зажигания или изоляцию обмотки катушки.
Стоит отметить, что отсутствие искры на всех свечах сопровождается отсутствием признаков жизни двигателя, то есть, он вообще не заводится. Поэтому, чаще всего, из строя выходит одна свеча или провод, который тут же меняют. Хотя имеет место быть то, что при исправности всех свечей зажигания, они все равно нестабильно работают именно на вашем двигателе. Можно попробовать устранить проблему заменой деталей.
- Загрязненность топливного фильтра. Возникает при длительной эксплуатации автомобиля, когда отверстий в фильтре остается все меньше и двигатель работает с каждым разом все хуже. Топливный фильтр подвергается замене.
Вот, пожалуй, и все причины, по которым могут плавать обороты холостого хода. Как видите, их диагностика и способы устранения не вызовут особых сложностей, поэтому данную процедуру можно выполнить своими руками, без помощи сотрудников автосервиса.
Холостые обороты двигателя: понятие и особенности
Холостой ход — это эксплуатация устройства без какой-либо нагрузки. У автомобиля холостыми оборотами двигателя называется его работа при полностью выжатом сцеплении. В это время крутящий момент не передается от коленчатого вала мотору и колесам. Они в этом случае полностью разобщены.
Нормальные обороты холостого хода составляют 800-1000 ед. При их уменьшении мотор глохнет, при повышенном числе начинается перерасход топлива. Какие обороты должны быть у вашего автомобиля, указано в инструкции по эксплуатации.
От чего зависят обороты холостого хода?
Обороты холостого хода можно отрегулировать самостоятельно или с привлечением специалиста. Для этой цели в автомобиле имеется несколько специальных агрегатов и узлов. К ним относится:
- топливная система;
- разного рода датчики;
- дроссельная заслонка;
- клапан холостого хода;
- педаль акселератора.
В состав топливной системы входит инжектор или карбюратор. Это агрегаты, в которых топливная жидкость смешивается с воздухом, образуя горючую смесь. В систему включен, и топливный насос с регулятором давления смеси. Работа системы питания двигателя топливом контролируется многочисленными датчиками.
На количество оборотов большое влияние оказывает и положение дроссельной заслонки. Она регулирует подачу в двигатель воздуха. Увеличить или уменьшить обороты можно нажатием на педаль акселератора.
Двигатель автомобиля может работать не очень стабильно на холостых оборотах по нескольким причинам:
- загрязнение некоторых узлов;
- неполадки в системе зажигания.
Загрязнение может осуществляться отработанным маслом, примесями, которые проходят сквозь фильтры, сажей и водой. В системе зажигания могут быть окислившиеся или плохо затянутые провода.
Как изменить обороты?
Внимательные автовладельцы всегда тщательно следят за автомобилем и его состоянием. Это дает существенную экономию на ремонте и расходе топлива, снижает риск поломок и аварий. Как снизить обороты двигателя на холостом ходу? Как уже отмечалось, это можно сделать самостоятельно или с привлечением специалиста. Для работы нужно приготовить:
- штатный набор инструментов;
- новые или б/у хомуты;
- прокладки новые.
Холодный мотор после его включения обычно некоторое время работает на повышенных оборотах. После прогрева они падают до нормы холостого хода, которая равняется 800-1000 об/мин. Точное их количество указано в каждом руководстве по эксплуатации автомобиля. Если же они не приходят в норму, нужно найти и устранить неисправность.
Если на автомобиле установлен двигатель карбюраторного типа, то неисправности могут быть такими:
- разрегулированный карбюратор;
- подсос воздуха в соединениях шлангов;
- неисправности проводки и клапана, регулирующего холостой ход;
- неправильная работа системы зажигания;
- грязный воздушный фильтр.
Регулировка делается довольно просто. На старой машине нужно:
- снять карбюратор и прочистить его;
- проверить работоспособность резиновых шлангов и прокладок;
- заменить изношенные хомуты.
Грязный карбюратор часто бывает причиной увеличения холостых оборотов. Поэтому его нужно тщательно промыть после чистки. Если нет собственного опыта в этом деле, лучше пригласить специалиста. Шланги можно проверить на работающем двигателе путем их пережимания.
При проведении процедуры следует внимательно прислушиваться к работе двигателя. Изменение количества оборотов является указателем того, что вы нашли нужный шланг. Порванные прокладки и неплотные хомуты позволяют воздуху проникать в мотор. Обороты от этого увеличиваются.
В инжекторном двигателе невозможно механическим способом отрегулировать количество оборотов. Они зависят от прошивки бортового компьютера. Для их изменения нужно перепрошивать систему управления холостым ходом. Сделать это может только специалист. Но не следует слишком занижать обороты, так как это приведет к преждевременному износу генератора.
Перед началом эксплуатации нужно проверить правильность выставления зазоров в газораспределительном механизме, чистоту воздушного фильтра, исправность свечей, работу заслонки обогащения рабочей смеси. Далее готовится отвертка с прибором регулировки холостых оборотов. Использовать ее нужно только в том случае, если остальные принятые меры не привели к ожидаемому результату.
Работа выполняется в несколько этапов:
- Выключается зажигание, концы проводов прибора подсоединяются в соответствии с технологической картой, приложенной к нему. После этого двигатель запускается и винтом регулировки количества смеси устанавливается частота вращения по прибору 800 об/мин.
- Следующая операция связана с винтом качества. Его регулировкой добиваются содержания СО₂ в выхлопных газах не более 3%.
- Опытные автомобилисты регулируют холостые обороты по слуху. Они поочередно вращают винты количества и качества, добиваясь ровного рокота двигателя на всех режимах его работы.
На двигателях, оснащенных инжектором, иногда приходится регулировать холостые обороты заменой датчика холостого хода. Поменять его довольно просто, имея в руках фигурную отвертку. Последовательность операций:
- в ближайшем магазине по продаже автозапчастей нужно приобрести новый датчик;
- открыть капот и отсоединить минусовую клемму аккумулятора;
- найти старый датчик и отсоединить от него колодку с проводами;
- отверткой открутить крепежные винты (2 шт.) и демонтировать устройство;
- заменить уплотнительное кольцо и поставить новый датчик на место;
- завернуть винты крепления и подключить колодку с проводами.
Новый датчик должен сразу же после запуска двигателя начать свою работу по регулированию оборотов холостого хода. Внутри этого приборчика находится электродвигатель и игла, регулирующая поступление воздуха в двигатель. От количества воздуха зависит показатель оборотов двигателя. При необходимости можно начинать движение даже на холодном моторе.
Заключение по теме
Двигатель — это сердце автомобиля. У него могут случаться перебои в работе. О проблемах будут свидетельствовать его обороты. Если они «плавают» — это сигнал к действиям по устранению причин неполадки. Если при работе на холостых оборотах на тахометре значится менее 800 или более 1200 ед. — это непорядок.
При отсутствии тахометра «плавание» можно услышать. Рокот включенного мотора становится то реже, то чаще. Подобные ситуации могут возникать и при других режимах работы автомобиля. Чаще всего это происходит с инжекторными двигателями.
Обороты мотора меняются в зависимости от количества, попавшего в цилиндры воздуха. Причиной может стать выход из строя электронных регуляторов и датчиков, а также шлангов и резиновых прокладок.
Нужно постоянно держать их в чистоте. Хомуты должны быть всегда плотно затянуты, прокладки — без трещин. Заменить вышедшие из строя детали можно собственными силами. Без особых проблем обновляются шланги, прокладки, регуляторы холостого хода (фото № 3). А лучше всего чаще обращаться в сервисные службы по ремонту автомобилей. Квалифицированные специалисты вовремя заметят неполадки и устранят их. Удачных вам дорог!
Mercedes-Benz W124 | Регулировка оборотов холостого хода и содержание СО в выхлопных газах
10.15. Регулировка оборотов холостого хода и содержание СО в выхлопных газах
ОБЩИЕ СВЕДЕНИЯ |
Регулировка оборотов холостого хода двигателя выполняется с применением точного
тахометра без снятия воздушного фильтра.
Доступ к винту регулировки оборотов холостого хода
| Доступ к винту регулировки оборотов холостого
хода возможен через выемку в нижней части кожуха воздушного фильтра. |
Использование торцового ключа для регулировки качества
топливной смеси
|
ПОРЯДОК ВЫПОЛНЕНИЯ | ||||||||||
|
Nissan. Регулятор холостого хода — проблемы и решения
03.12.04 Клапан ХХ Nissan
Думаю, ни для кого уже не секрет, что в системе управления двигателя автомобилей марки NISSAN есть “cлабое звено” — IACV (idle air control valve), или, как мы все привыкли называть: » регулятор холостого хода».
Очень часты обрывы, межвитковые и короткие замыкания данного клапана.
Но иногда, особенно после короткого замыкания IACV и далее после замены клапана (ремонт в условиях потоковой диагностики считаю нерентабельным), ожидаемой стабилизации оборотов холостого хода не происходит, автомобиль также плохо заводится Почему?
“Разбор полетов” показывает, что причина проблемы кроется в неисправности блока управлении двигателя, а конкретно: в выходе из строя драйвера управления IACV.
Налицо недоработка инженеров фирмы HITACHI, а именно они производят эти блоки, по защите цепей от КЗ обмоток РХХ. Или это кому-то выгодно?
Но в описываемом мною случае, первопричиной выхода из строя блока управления двигателя явился …антифриз (а, скорее всего жидкость на него похожая).
При недавнем мелком ремонте двигателя некие “очумелые ручки” не поставили уплотнительную резинку между корпусом IACV и корпусом дроссельной заслонки, а намазали герметиком. Со временем тосол из системы подогрева IACV разъел герметик и стал попадать на клапан (вызвав КЗ обмотки) и через дроссель в двигатель. Итог неквалифицированного ремонта: замена клапана, ремонт контроллера, чистка дросселя, промывка двигателя (эндоскопический осмотр камер сгорания и клапанов выявил большие отложения).
Всем удачного ремонта!!!
ВОРОБЬЁВ Антон Валерьевич
ник на форуме Легион-Автодата — 12 volt
г. Нижневартовск
http://autodata.ru/news.osg
Фёдор Александрович
01.05.07 Система стабилизации холостого хода
часть 1
С точки зрения теории автоматического регулирования (ТАР), эти системы относятся к замкнутым системам с обратной связью. В чем это выражается?
Как любая система, система АР (автоматического регулирования) имеет замкнутый контур:
рис.1
В обход дроссельной заслонки ставится регулятор холостого хода. Он находится в так называемом байпасном канале (от английского слова by pass – «миновать мимо»):
рис.2
Исполнительным механизмом является регулятор холостого хода. Устройство рассмотрим чуть позднее.
Датчиком (см. рис.1), является датчик скорости вращения двигателя. Неважно, как он устроен. Его задача – определить реальную скорость вращения двигателя. В качестве этого датчика может использоваться:
1.Датчик коленвала.
2.Датчик распредвала.
3.Датчик скорости вращения двигателя.
Объект регулирования – это двигатель, точнее частота его вращения.
Схема сравнения, расположенная в блоке управления двигателем, сравнивает реальную частоту вращения двигателя с той, которая необходима в данный момент (заданную задающим механизмом) и выдает команду исполнительному механизму больше или меньше открыть обходной (байпасный) канал для подачи дополнительного воздуха. Таким образом, обороты холостого хода всегда держатся на заданном уровне.
На экране сканера мы видим следующую картину:
Или такую:
А вот теперь мы нажимаем на педаль газа. Нам уже система стабилизации ХХ не нужна! Нам ехать надо, повышать обороты – а эта система будет стремиться вернуть их к установленным?!
При размыкании контактов холостого хода в датчике положения дроссельной заслонки, петля «обратной связи» размыкается, и система перестает отслеживать установленную частоту вращения двигателя. Более того, регулятор ХХ (холостого хода) по командам с ЭБУ (Электронный Блок Управления) двигает его в сторону увеличения оборотов ХХ. При резком отпускании педали газа (торможении) система «подхватывает» обороты на уровне порядка 1000-1500 об \ мин и плавно опускает их до оборотов холостого хода, не давая двигателю заглохнуть на переходных режимах.
Таким образом, наличие параметра IDLE является основополагающим в работе системы стабилизации холостого хода.
Что мы видим в действительности? Двигатель имеет пониженные обороты ХХ? Вместо чистки каналов дроссельной заслонки давайте накрутим винт регулировки ее начального положения! Обороты возросли? Плати деньги и уезжай! А то, что параметр IDLE изменился с ON на OFF, и система перестала поддерживать обороты ХХ (про TPS — то забыли!) – это уже неважно…
Рязанов Федор Александрович
(father)- руководитель обучающего центра ИнжекторКар
http://www.autodata.ru/item.osg?
Теперь немного Практики:
NISSAN AD QG15 2000 г. в.
РХХ — регулятор холостого хода IACV — IDLE AIR CONTROL VALVE — AUXILIARY AIR CONTROL (AAC) VALVE
…самолечением заниматься — неблагодарное дело.
Теперь все по порядку.
Позвонил знакомый электрик, просил записать его соседа по гаражу: автомобиль Машина не заводится, «горит» предохранитель (фото внизу, стрелка):
и как сгорит, пропадает «плюс» на катушках зажигания.
|
Зная, что частая проблема этих двигателей заключается в IACV, решил глянуть на всякий случай его электрическую схему.
|
Питание, что на катушки, что на IACV шло с одного предохранителя №34 .
Через два дня, когда притащили NISSAN, расспросил у клиента, какие ремонты делались, что с машиной. Он рассказал, что были, с месяц назад, проблемы по холостому ходу, и кто-то ему посоветовал заменить IACV, что он и сделал. Потом, вроде, машина ездила более-менее нормально. Машина была уже без предохранителя, проверять сгорает ли он, я не стал.
При осмотре оказалось, что IACV был со следами тосола. Фишка (разъем) на IACV тоже в тосоле (фото слева) Проверка сопротивления обмоток IACV, подтвердила, что он сгорел (фото справа)
Клиент был очень удивлен, сказал, что он «вроде как недавно менял его, и что девайс «не дешевый».
Пришлось провести разъяснительную беседу о вреде самолечения с показом, сколько тосола в IACV (фото слева), и показать ему сгоревший контроллер (фото справа)
После промывки дроссельного патрубка, IACV замены прокладки, ремонта контроллера, вставил предохранитель и завел машину.
Обучение ХХ прошло нормально.
Так что пришлось Клиенту за то, что хотел сэкономить, два раза в течение месяца покупать РХХ. А может, это и сгубило контроллер, хотя сгореть он мог и в первый раз.
Луганский Георгий
г. Красноярск
ООО Автосервис «Автомир»
И снова теория:
08.05.07 Системы стабилизации холостого хода
часть 2
Итак, с чего начнем проверку системы стабилизации холостого хода?
Первым делом проверяем наличие импульсов на регулятор холостого хода (РХХ).
Но мы не знаем, какого типа РХХ установлен на данном автомобиле! Смотрим в район дроссельной заслонки. Мы можем увидеть 3 типа регуляторов:
Соленоидный тип
На разъеме видим всего лишь 2 контакта (2 pin).
Принцип действия очень прост. На соленоид подается напряжение 12 вольт. Он втягивает сердечник, сердечник открывает байпасный канал – подается дополнительный воздух – обороты ХХ возрастают. Напряжение пропадает – сердечник под действием пружины перекрывает байпасный канал – обороты падают.
Но нам не нужен полностью открытый или полностью закрытый байпасный канал. Нам нужно открыть его на необходимую величину. В данных регуляторах для открытия их на необходимую величину применяется метод Широтно-Импульсной Модуляции (ШИМ). На обмотку сначала подается короткий импульс на открытие, затем долгое время импульс отсутствует (клапан закрыт).
Это показано на рисунке (а — «закрыто», б — «открыто» — см. стрелки):
Импульсы подаются с большой частотой и клапан не успевает открываться или закрываться полностью – вибрирует с высокой частотой в каком то среднем положении, задаваемой шириной импульсов. Чем шире импульс (скважность) – тем на большую величину открыт клапан. Изменяя ширину импульсов (скважность импульсов) можно менять степень открытия данного клапана.
Роторный тип
В байпасный канал ставится ротор, который либо открывает, либо закрывает канал дополнительной подачи воздуха.
Конструктивно он сделан следующим образом:
Принцип управления очень похож – подавая широтно — импульсно модулированные сигналы в обе обмотки, блок управления меняет степень открытия байпасного канала – меняются обороты.
Схема управления приобретает следующий вид:
РХХ данного типа имеет 3 контакта (3 pin) — один общий провод (+В) и 2 управляющих.
Осциллограммы на них не нормируются, главное наличие импульсного сигнала 12 вольт.
Шаговый тип
Принцип действия шагового двигателя прост: кольцевой магнит и 4 обмотки, расположенные под углом 90 градусов.
Импульсы подаются последовательно в обмотки 1-4-2-3. Полюса кольцевого магнита поочередно притягиваются к эти магнита последовательно притягиваются к обмоткам – происходит вращательное д движение ротора, которое через червячную передачу открывает или закрывает байпасный канал. Для движения в обратную сторону импульсы подаются в последовательности 1-3-2-4 .
Как мы видим, для первых двух типов регуляторов импульсы подаются постоянно. Для шагового РХХ при установившемся режиме холостого хода без внешних воздействий (когда не требуется корректировка оборотов ХХ) блок управления может и отключить управляющие импульсы (червячная передача остается в том же положении – под действием потока воздуха своего положения не меняет).
Рязанов Федор Александрович (father)
руководитель обучающего центра ИнжекторКар
19.06.07 Системы стабилизации ХХ
часть 3
Продолжим проверку. Проверяем наличие импульсов на регулятор холостого хода (РХХ)
1. Импульсы есть.
Без осциллографа нам тут не обойтись. Смотрим величину и скважность этих импульсов.
РХХ у нас не шагового типа. Импульсы мы видим следующего типа:
Вместо прямоугольных импульсов мы можем увидеть заваленные фронты. Это нормально – не забываем про индуктивность обмоток. Скважность импульсов может меняться — нас интересует факт их наличия.
На сканере в разделе DATA STREEM видим следующий параметр:
Параметр IDLE «0 %» соответствует полностью закрытому регулятору холостого хода.
«100 %» — полностью открытому. Значение 50% означает, что система готова отработать обороты холостого хода, как и в сторону увеличения, так и в сторону уменьшения.
Конкретное значение данного параметра смотрим в мануалах. Например, фирма TOYOTA дает именно 50 %, другие фирмы предпочитают 30%.
Ну а если у нас шаговый двигатель?
Импульсы приобретают следующий вид:
Расположение импульсов не нормируется — главное их наличие по всем каналам. Величина импульсов строго должна соответствовать 12 вольт (5 вольтовые регуляторы встречаются достаточно редко….).
На сканере в разделе DATA STREEM мы видим параметр:
Что это означает? При включении зажигания шаговый двигатель тестирует сам себя.
Проходит от одного крайнего положения до другого. Примерное количество шагов колеблется от 100 до 200. STEP 30 означает, что в сторону уменьшения оборотов система способна сделать 30 шагов, в сторону увеличения – максимальное значение минус 30 шагов.
Предположим, у нас загрязнится дроссельная заслонка. Количество проходящего воздуха уменьшиться. Обороты упадут, регулятору холостого хода придется на большее значение открыть байпасный канал.
В DATA STREEM мы увидим совсем другой параметр:
Когда это значение приблизится к максимальному, система потеряет способность корректировать обороты в сторону увеличения. При полностью исправной системе стабилизации холостого хода получим нестабильные обороты.
Чистка дроссельной заслонки и байпасного канала – это не роскошь, а обычное техническое обслуживание.
Ну что же, заслонку в порядок привели, а обороты ХХ по-прежнему нестабильные.
Проверяем сам регулятор ХХ. Проверяем сопротивление обмоток. Данные берем из мануалов, но на практике достаточно того, чтобы оно было. На шаговых регуляторах сопротивление всех обмоток должно быть примерно одинаковым. Обрыв обмоток – достаточно часто встречающийся дефект. Дело в том, что обмотки, как правило, заливаются компаундом с коэффициентом теплового расширения равным коэффициенту теплового расширения самой обмотки. Но идеала не бывает, и при нагреве-охлаждении происходит ее обрыв.
Другой дефект – заедание или люфт самого клапана. Либо грязь, либо механический износ. Теория автоматического регулирования достаточно подробно рассматривает устойчивость системы в этом случае. Не углубляясь в долгие математические расчеты, заметим, что данный дефект способен нарушить работу системы вплоть до автоколебательного режима. Обороты начинают «плавать». Такие регуляторы подлежат замене.
2.Импульсов нет.
Обычно в таких случаях ставиться диагноз «Замена блока управления». Действительно, выход из строя выходных каскадов, управляющих регулятором – не такой уж и редкий дефект. Но не будем торопиться. Блок управления бракуется только лишь в том случае, если проверены все питания (массы) и все входящие импульсы.
Проверяем питание (массу) на клапане. Далее проверяем входные сигналы. Вспоминаем, что необходимо для работы системы.
1. Данные о реальной скорости вращения двигателя. Они сравниваются с заданными для данного режима, и система стабилизации принимает решение об увеличении или уменьшении оборотов. Эти импульсы берутся с датчиков системы зажигания, и их отсутствие вызывает так же сбой в работе других систем (топливоподача, тахометр и пр.)
2. Датчик температуры охлаждающей жидкости. По его показаниям на холодном двигателе система стабилизации держит повышенные (прогревочные) обороты холостого хода. Сбой в работе этого датчика также вызывает сбой в работе других систем (топливоподачи, например)
3. Датчик положения дроссельной заслонки. Точнее, его контакты холостого хода.
При отпущенной педали газа они должны быть замкнуты.
При небольшом нажатии на педаль газа они должны разомкнуться.
В датчиках, у которых отсутствуют эти контакты, данные об отпущенной педали газа, рассчитываются блоком управления по выходному напряжению самого датчика. Как используется этот сигнал? Дело в том, что при нажатии на педаль газа (мы увеличиваем обороты) необходимость в системе стабилизации холостого хода отпадает (обороты мы регулируем дроссельной заслонкой). Более того, при размыкании этих контактов регулятор (особенно это относиться к регуляторам шагового типа) происходит следующее: регулятор приоткрывается до уровня, соответствующего оборотам 1000 – 1200 об/мин. При резком отпускании педали газа система «подхватывает» обороты на этом уровне и плавно опускает их до уровня холостого хода. Таким образом, сигнал контактов холостого хода является тем сигналом, который включает систему стабилизации ХХ в работу. При постоянно разомкнутых контактах (например, разрегулирована дроссельная заслонка или сбит датчик положения дроссельной заслонки) система стабилизации поддерживать обороты холостого хода не будет.
Заметим так же, что на системах с шаговым двигателем импульсы на него могут отсутствовать в случае стабильной работы двигателя на холостом ходу (нет необходимости какой либо регулировки). Для проверки импульсов в этом случае систему необходимо «спровоцировать»- включить какую-нибудь нагрузку (фары, кондиционер), либо просто сделать перегазовку.
И только после всех этих проверок есть основания для браковки электронного блока управления.
На этом теоретические объяснения Рязанова Фёдора заканчиваются, и мы снова переходим к практической части.
…Машина заглохла. Попытки её завести успехом не увенчались.
В салоне явно чувствовался запах гари – что-то «конкретно сгорело».
А дымок откуда? Дымок из-под «торпеды».
Разобрали, сняли и по запаху и «реальному дымку» определили: дымок вьётся из ECU автомобиля.
На фото вы его видите. И сразу понятно, что там «конкретно» все выгорело, в том числе и дорожки, по которым можно было определить направление к «пинам» и уже оттуда определить нужные цепи.
Если автоДиагност частый посетитель Интернета, он должен был видеть на том или ином сайте подобные фото и сразу определить ЧТО сгорело и к ЧЕМУ это относится. А если с такой
проблемой он сталкивается не часто, то тут на помощь должна прийти логика и методика поиска.
…при такой неисправности не может не быть «технической подсказки» в виде сгоревших предохранителей. Действительно, предохранитель IG1 был сгоревшим.
Вот тут надо посмотреть общую схему и определить, за что он отвечает и какие цепи питает.
Смотрим схему:
Определяем: клапан IACV, клапан EGR и система зажигания – красные стрелки.
А потом смотрим под капотом и сразу же находим причину – это IACV, клапан холостого хода.
Фото его разъема справа. Видно, что он «реально обожрался тока»,-☺
При поиске неисправности может возникнуть и другой вариант: «… все, вроде исправно, но есть сомнения…»
Если есть сомнения в исправности IACV, то проверять его можно по такой методике,- рис. внизу
Сопротивление обмоток должно составлять 20-24 Ома при 20 градусах Цельсия.
Для памяти:
При неисправности IACV возникает код неисправности
DTC P0505
IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE
Проверка IACV осуществляется так:
— двигатель прогрет до 80 градусов Цельсия
— кондиционер выключен
— селектор выбора передач в положении N или P
— нет нагрузки на двигатель
На ХХ сканер должен показать от 5 до 20 step\ «шагов» IACV
Для примера: можно посмотреть оригинальную электрическую схему управления IACV
для мотора SR20DE.
Обратите внимание на электрические цепи, которые контролируются ECU (Detectable)
с этой неисправностью разбирался
Белов Сергей Александрович
Московская область, г. Лосино-Петровский
автосервис «NOVA»
Можно позвонить в рабочее время: 8 – 903 – 774 – 11 — 82
А вот другой пример из города УФА
Заурядная ситуация на Nissan, типах двигателя QG15: «Отказ работы клапана холостого хода».
Но не всем так везёт, как повезло этому клиенту, обычно при такой проблеме как «прохудившееся прокладка клапана холостого хода», антифриз попадает на сам клапан и закорачивает обмотку, а дальше сгорает драйвер клапана холостого хода в блоке управления двигателя.
Здесь произошло обратное: на клапан попало не так много, это видно по рисунку справа, Проверка и замер сопротивления на обмотке это подтвердило, в клапане пострадала только одна обмотка, но не полностью, а частично.
При этой ситуации блок управления не выдавал никакой ошибки и это затруднило поиск в других автосервисах, где ещё не сталкивались с такой ситуацией.
Так как видно было, что узел клапан ХХ пробовали ремонтировать, пересаживали его на герметик, а в в конце, не справившись с ситуацией, накрутили винт регулировки дроссельного узла, что бы поднять искусственно холостой ход.
Потом, со слов клиента, автомобиль стал еще и глохнуть после отпускания акселератора или после движения на остановках. Но это и понятно, так как на этих двигателях стоит датчик дроссельной заслонки двухуровневый, один отвечает за работу отклонения дроссельной заслонки — это чёрный разъём, а второй, коричневый отвечает за отключение и включения клапана холостого хода, в зависимости от того в каком положение ДДЗ.
В этом случае обошлось заменой самого узла холостого хода, но во многих случаях я ещё и менял или драйвер который не составляет труда купить его в магазинах электроники, по крайней мере, у нас в Уфе, или замена самого блока ЭБУ.
с неисправностью разбирался
Кудряшов Рамиль Сатиевич
Автоцетр «ESSO», автодиагност-автоэлектрик
город Уфа
улица Пугачёва 300
територия бывшнго ремзавода
ник на форуме Легион-Автодата – «рома»
ниже ссылка на карту: «Как найти и проехать»
http://maps.yandex.ru/
Автомобильный Диагност из г. Волгодонска ДМИТРИЙ КАБАНОВ (ник на форуме Легион-Автодата Fack4D) тоже делится опытом решения подобных проблем:(…чаще с этой проблемой сталкивался на ММС):
Диагностировать данную неисправность достаточно несложно (наверное). Для начала сканер — читаем коды, смотрим параметры (положение дросселя, признак хол. хода) и делаем выводы.
Далее диагностика в ручном режиме. Очень важно, особенно начинающим, научится(заставить себя) не пользоваться «контролькой».
Итак: нужно отстыковать 6-ти контактный разъём от IACV и проверить +U на двух средних выводах, при вкл. зажигании.
Далее снимаем сам IACV и измеряем сопротивление обмоток между центральным и крайними выводами каждого ряда. Сопротивление в зависимости от марки авто должно быть примерно 20-40 Ом. Обращаем особое внимание на одинаковость сопротивления всех четырёх.
Если одна и более обмотка ( катушка), имеет отклонение в нижнюю сторону (витковое замыкание), IACV выбрасываем и можно сразу переходить к вскрытию и внешнему осмотру внутренностей ECU (50% неисправностей обнаруживаются внешним осмотром, ещё 25% обнаруживаются более тщательным внешним осмотром, и лишь оставшиеся 25% приходятся на скрытые (внутренние) отказы электронных компонентов).- Моё мнение.
Хотя некоторые IACV имеют разборную конструкцию и при наличии желания и времени обмотку(и) можно перемотать.
Лично у меня такой опыт имеется, но это было давно.
При перемотке особое внимание нужно уделять фазировке (начало-конец).
Подключаем IACV, держим его в руке и просим помощника включить – пауза — выключить зажигание, при этом исправный IACV должен выдвинуться — задвинуться или наоборот, неважно. Если этого не происходит, под подозрение попадает ECU, дальнейшие действия я описал выше, ещё ни разу не попадалось обрыва эл. проводки.
В общем так….
Спасибо, Дмитрий. А ниже мы можем видеть поэтапно, КАК
Дмитрий Кабанов решает этот вопрос, смотрим:
Участник форума Легион-Автодата Nikola, город Магадан, эту же проблему решает немного по-другому:
Павлюченко Николай Фёдорович
Автоэлектрик
г. Магадан
8 914 850 3757
А вот какие пояснения нам даёт Малахов Игорь Олегович, автомобильный Диагност из города Калининграда, ник на форуме Легион-Автодата shpuntik
Каков «активный тест» на этом моторе, график
Тест такой. Можно открывать или закрывать клапан пошагово, по одному шагу каждым нажатием кнопки на сканере.
В чем заключается взаимодействие угла опережения зажигания с параметрами регулировки IACV — ?
ЭБУ после обучения запоминает минимальное количество шагов, соответствующее нормальному ХХ. При этом проверяется соответствие показаний MAF сенсора эталонному, наверное, хранящемуся в памяти. По мере загрязнения дроссельной заслонки, ЭБУ меняет положение регулятора холостого хода в сторону увеличения и одновременно переобучается. После чистки ДЗ, блок не может понять таких изменений в количестве поступающего воздуха при установлении на РХХ последнего из запомненых положений клапана и начинает уменьшать обороты изменением УОЗ в сторону «позже». Для SR20DE этот сдвиг примерно 15 градусов. То есть, должен быть УОЗ 15, а в реальности 0. Запуская процедуру обучения, мы заставляем ЭБУ найти новое значение РХХ при котором УОЗ будет 15 градусов и обороты 700.
Какие есть варианты адаптации для этого мотора – варианты
Вариант только через сканер, педалью там не делается. Есть куча нюансов, на лист печатного текста, которые описываются в мануале и в TSB Ниссана. Не знаю как на «правильных» (автомобили с правым расположением руля) машинах, но на левых ЭБУ при выполнении всех необходимых условий обучается САМОСТОЯТЕЛЬНО! Припятствовать этому могут разные вещи, например, погнутый упор ДЗ, установленные под клапаном РХХ алюминевые прокладки одна или две (заслонка-то изнашивается со временем и прокладки под клапаном, установленные на заводе, становятся лишними). Увидеть эти проблемы можно в дата-стрим, когда шагов на РХХ — 15, а обороты всё ещё выше 700, допустим 750 и выше. В этом случае и УОЗ будет в районе 0 градусов. Вот сразу и проверяешь наличие прокладок под РХХ или «погнутость» упора ДЗ. Такое же влияние окажет и подсос во впуске, который при грязной заслонке не давал о себе знать.
Как реагирует прокладка IACV на многочисленные циклы нагрева-охлаждения + протекание ОЖ?
Я думаю, что вся проблема в агрессивности используемого антифриза. Видно мешают какую-то хрень производители, чтобы не замерзала в ущерб качеству.
Что можно сказать в заключение:
— все эти проблемы возникают не на пустом месте, основная причина чисто русская:
«надежда на «авось», то есть, «человеческий фактор»
— вовремя не проведенное техническое обслуживание автомобиля – прямой путь к неминуемым финансовым расходам владельца автомобиля
Какие выводы?
Простые:
— вовремя и регулярно проводите положенное техническое обслуживание своего автомобиля
— доверяйте диагностику и ремонт своего автомобиля только проверенным специалистам
© 1999 – 2010 Легион-Автодата
Изменение форсунок дизельного топлива
Фото 2/16
| 002 Модификация форсунок дизельного топлива
Впускной воздух и заправка топливом — главные составляющие формулы эффективности дизеля. И, теоретически, чем больше каждого из них, тем лучше будет работать дизельный двигатель — при условии, что воздух и топливо управляются должным образом.
Если посмотреть конкретно на топливную составляющую, то увеличение объема — это билет. С тех пор, как то, что можно назвать вечностью, было ключом к почти мгновенному повышению мощности и крутящего момента масляной горелки на более высоких уровнях.Однако выгоды от увеличения количества топлива имеют свою цену: чрезмерные выбросы выхлопных газов, обычно называемые черным дымом, выбрасываются в атмосферу.
В недавнем прошлом (и, к сожалению) энтузиасты дизельного топлива ошибочно считали загрязнение видимым подтверждением мощности двигателя. На самом деле это не так. Чрезмерный черный дым является признаком неэффективности управления воздухом и топливом, независимо от того, насколько велик объем топлива.Сегодня «не курить» — это сплоченный клич для поклонников дизельных двигателей, особенно для многих из тех, кто занимается производством двигателей, шейкеров и «мастеров» в отрасли. Заставить двигатели, особенно в новых установках, производить больше мощности и крутящего момента без большого количества дыма — и с неповрежденными компонентами контроля выбросов — вот где это сейчас. Компании работают над деталями и системами, которые помогают двигателям производить чистый пар. Компания Dynomite Diesel Products из Хайдена, штат Айдахо, делает это с помощью технологии топливных форсунок, что, по нашему мнению, является большим шагом в правильном направлении.В этом отчете мы рассмотрим, как Dynomite модифицирует форсунки (для старых и новых дизельных двигателей), и затронем две очень важные проблемы в текущей ситуации.
Электронно-разрядная обработка
Фото 3/16
| 003 Изменение форсунок дизельного топлива
Фото 4/16
| 004 Изменение форсунок дизельного топлива
Фото 5/16
| 005 Изменение форсунок дизельного топлива
Обычно называемый на предприятии Dynomite только «EDM» (электроэрозионная обработка), процесс увеличения отверстия сопла подчеркивается машиной, в которой используются электрически заряженные провода разного диаметра (измеряется в десятых долях тысячных дюйма) либо увеличить существующее отверстие в сопле инжектора или создать новые отверстия.Это та же процедура, которую используют производители оригинального оборудования для расточки начального отверстия. Существуют «рецепты» для определения процента увеличения диаметра отверстия, необходимого для получения скорости потока (измеряемой в литрах в минуту воздуха) и заявленного прироста мощности. Рецепты созданы с использованием данных подробных испытаний расхода топлива и динамометрических испытаний шасси с различными грузовиками и двигателями. Хотя мы настаивали на получении более подробной информации о процедурах электроэрозионной обработки, к сожалению, Dynomite Diesel Performance не смогла подробно рассказать об этом запатентованном сегменте обслуживания форсунок.Однако важно отметить, что есть некоторые рецепты инжекторов, которые на самом деле не требуют EDM.
Экструзионный хон
Фото 6/16
| 006 Модификация форсунок дизельного топлива
Фото 7/16
| 007 Изменение форсунок дизельного топлива
Этот процесс экструдированного хонингования следует за EDM, и хонинговальный станок является одним из самых важных инструментов Dynomite. Он используется для увеличения, очистки и полировки сопел распылителей для максимального распыления топлива.Экструзионное хонингование (также известное как абразивная обработка) — это запатентованный процесс, который включает нагнетание шпатлевки, содержащей абразивный материал различной зернистости, через существующие отверстия для сглаживания и увеличения проходов. Хонингование выдавливанием — единственный метод, который облегчает создание радиуса на внутреннем крае распылительного отверстия сопла форсунки. Радиус помогает устранить турбулентность, что, в свою очередь, повышает производительность при низком уровне выбросов. На этих фотографиях представлены наглядные примеры стандартного инжектора и изогнутого края струйной машины с экструдированной обработкой.
Сборка
Фото 8/16
| 008 Изменение форсунок дизельного топлива
Фото 9/16
| 009 Изменение форсунок дизельного топлива
После завершения процесса экструдирования форсунки готовы к сборке. Стандартные насадки заменяются на новые модифицированные насадки, а гайки насадок затягиваются в соответствии со спецификацией.
Тестирование
Готовые модифицированные форсунки проходят серию тестов, которые включают проверку расхода с использованием высокоточной машины, называемой «броненосец», или расходомеров компании Bosch 205 и HA-230 HEUI.
Фото 15/16
| 014 Изменение форсунок дизельного топлива
Также рассчитывается количество дыма, выделяемого двигателем с модернизированными форсунками. После установки форсунок в двигатель грузовика и использования устройства, называемого измерителем непрозрачности, которое помещается в выхлопную трубу, технические специалисты Dynomite проводят либо испытание срабатывания дроссельной заслонки, либо управляют грузовиком под устойчивой нагрузкой на динамометрическом стенде шасси. Сфокусированный луч внутри испытательной головки измеряет процент света или его отсутствие и обеспечивает процентное количество выделяемых твердых частиц (сажи) и других дымовых газов.
Фото 16/16
| 015 Изменение форсунок дизельного топлива
Вышеупомянутый динамометрический стенд — это место, где модифицированные топливные форсунки подвергаются заключительному испытанию. Ram 3500 — это 100-процентный запасной станок 2017 года, который использовался для сбора данных для этого отчета. Результаты включены, чтобы показать вам тип выигрыша, полученного в результате этого обновления.
Источники
Dynomite Diesel Products
(208) 209-3214
https: //www.dynomitediesel.ком
Механизм впрыска топлива — Стеклооборудование для обслуживания и ремонта автомобилей
На четырехтактном (четырехтактном) двигателе с последовательным впрыском топлива топливные форсунки срабатывают со скоростью 1/2 от скорости вращения двигателя (то есть: частота вращения двигателя 3000 об / мин равна 1500 импульсам форсунки в минуту), что просто случайно с той же скоростью, с которой загорается свеча зажигания одного цилиндра. Четыре фактора позволяют инжектору работать на этой скорости.
Во-первых, электричество движется со скоростью света.Это дает инжектору преимущество над скоростью двигателя. При проектировании инжектора инженеру необходимо подумать о гармониках инжектора. Это означает, что инжектор должен закрываться достаточно быстро, чтобы полностью перекрыть поток топлива на максимальной скорости, на которой он должен работать. Это делается путем установки пружины нужного размера и веса. Для его открытия используется электромагнит. Он может перемещать кусок металла, хотя и не со скоростью света, но очень быстро. Блок управления двигателем (ЭБУ) сообщает форсунке, чтобы она оставалась открытой в течение определенного периода времени (так называемая ширина импульса ), что в сочетании со следующими двумя факторами позволяет подавать необходимое количество топлива с учетом рабочих условий. потребности двигателя (скорость, нагрузка и т. д.).
Вторая часть этого уравнения — размер отверстия форсунки. Это позволяет впрыскивать определенное количество топлива в любой момент времени.
Третья часть — это давление, при котором топливо вводится в систему. Если все остальное остается неизменным (ширина импульса, размер форсунки и т. Д.), По мере увеличения давления топлива количество топлива, которое проходит через форсунку, увеличивается. Например (и это произвольные числа), если в топливной системе давление ниже 30 фунтов на квадратный дюйм, а инжектор рассчитан на расход 30 фунтов в час, если вы увеличите давление до 45 фунтов на квадратный дюйм (1.В 5 раз превышающее нормальное давление), вы можете ожидать, что из инжектора будет выходить 45 фунтов в час. В какой-то момент это станет спорным, поскольку данное отверстие может пропускать только определенное количество топлива, но это уже другая история.
Четвертая часть нашей истории такова: для работы отдельного цилиндра двигателя действительно не нужно много топлива. Если небольшой четырехцилиндровый двигатель потребляет 40 миль на галлон, сколько фактических оборотов двигателя потребуется, чтобы он начал работать? Давайте разберемся с математикой.Предположим, наша маленькая воображаемая машина едет по дороге со скоростью 60 миль в час с частотой вращения двигателя 2000 об / мин. 60 миль в час равняются одной миле каждую минуту. Таким образом, каждую милю, которую вы путешествуете, ваш инжектор срабатывает только 1000 раз, или почти 17 раз в секунду. Это действительно не так быстро, если учесть, что большинство движущихся изображений работают со скоростью 24 кадра в секунду, а глаз может видеть с частотой ~ 60 Гц. Что все это значит? Форсунку не нужно открывать очень долго, и даже не нужно открывать очень далеко, чтобы в цилиндр попало достаточно топлива, чтобы он мог работать.
Скорость впрыска — обзор
6.8.1.2 Условия процесса и операции
В этом разделе рассматриваются температура и профиль расплава, вращение шнека, скорость и давление впрыска, температура формы и противодавление, управление циклом, процедура очистки, останов и процедуры запуска.
Условия литья под давлением для ряда ненаполненных фторполимеров приведены в таблице 6.27. Температуру расплава, измеренную на выходе из сопла, следует снижать по мере увеличения времени выдержки.Когда время выдержки велико, а температура высокая, в задней зоне следует установить более низкую температуру, чем в передней, чтобы минимизировать разложение полимера. При коротком времени выдержки температура спереди и сзади должна быть одинаковой. Механическая работа увеличивает температуру плавления, и это следует учитывать. Слишком высокая температура в задней зоне может вызвать перекрытие подачи, в то время как слишком низкая температура приводит к высокому требованию крутящего момента и остановке винта. При выборе температуры расплава следует учитывать расположение термопар, размер машины, тип и скорость шнека, размер порции и время цикла.
Таблица 6.27. Условия литья под давлением для фторполимеров [45,47]
Переменная процесса | PVDF | ECTFE | FEP | PFA | ETFE |
---|---|---|---|---|---|
Температура цилиндра (° C): | |||||
Задний | 193–215 | 265–277 | 315–329 | 315–332 | 273–302 |
Центр | 204–227 | 271–282 | 329–343 | 329–343 | 302–330 |
Передняя | 221–232 | 277–288 | 371 | 371 | 302–330 |
Температура сопла (° C) | 232– 260 | 288 | 371 | 371 | 343 |
Температура формы (° C) | Окружающей среды до 93 | Окружающей среды до 107 | 93 | 149–260 | |
Температура материала (° C) a | 282 | 343–382 | 343–399 | 303–329 | |
Скорость впрыска (об / мин) | Медленно – быстро | Умеренно быстро | Медленно | Медленно | Умеренно быстро |
Давление впрыска (МПа) | 6.2 | — | 21–55 | 21–55 | 21–103 |
Давление выдержки (МПа) | 3,5 | — | — | — | — |
Противодавление ( кПа) b | 172 | — | — | — | — |
Время (с) | |||||
Впрыск | 3–4 | ||||
Задержка | 7–8 | — | — | — | — |
Охлаждение | 25–30 | ||||
Усадка формы (%) (3.Испытательный стержень толщиной 2 мм) | 2,5–3,0 | — | 3,5–4,0 | 3,5–1,0 | 2,0–3,5 |
ECTFE , этиленхлортрифторэтилен; ETFE , этилентетрафторэтилен; FEP , фторированный этиленпропилен; PFA , перфторалкоксиполимер; PVDF , поливинилиденфторид.
В таблице 6.28 перечислены условия литья под давлением для ряда соединений различных фторполимеров.
Таблица 6.28. Условия литья под давлением для смесей фторполимеров [44]
Параметр процесса | PFA | PFA | PVDF | FEP | ETFE | ETFE |
---|---|---|---|---|---|---|
Наполнитель | Стекловолокно | Углеродное волокно | Углеродное волокно | Углеродное или стекловолокно | Стекловолокно | Углеродное волокно |
Содержание наполнителя (мас.%) | 15–30 | 20–30 | 10–30 | 20 | 10– 25 | 10–30 |
Температура цилиндра (° C) | ||||||
Задняя | 316–332 | 316–332 | 182–249 | 316–329 | 274 –302 | 274–302 |
Центр | 329–343 | 329–343 | 193–260 | 329–343 | 302–329 | 3 02–329 |
Передняя панель | 338–366 | 338–366 | 213–274 | 366–371 | 307–335 | 307–335 |
Температура расплава (° C) | 343–385 | 343–385 | 210–288 | 343–385 | 293–343 | 293–343 |
Температура формы (° C) | 149–232 | 149–232 | 82–104 | 93 | 66–149 | 66–149 |
Скорость впрыска при заполнении (мм / с) | 13–25 | 13–25 | 13–25 | 13–25 | 25–51 | 25–51 |
Винт (об / мин) | 60–90 | 60–90 | 60–90 | 60–90 | 60–90 | 60–90 |
Давление впрыска (МПа) | 55–83 | 55–83 | 69–103 | 21–55 | 69–103 | 69–103 |
Давление выдержки (МПа) | 21–48 | 21–48 | 34–69 | 21–48 | 34–69 | 34–69 |
Противодавление (кПа 2 ) | 0.34–0,69 | 0,34–0,69 | 0,34–0,69 | 0,34–0,69 | 0,34–0,69 | 0,34–0,69 |
Сушка смолы | ||||||
Температура (° C) | 121 | 121 | 121 | 121 | 121 | 121 |
Время (ч) | 2 | 2 | 2 | 2–4 | 2 | 2 |
ECTFE , этилен хлортрифторэтилен; ETFE , этилентетрафторэтилен; FEP , фторированный этиленпропилен; PFA , перфторалкоксиполимер; PVDF , поливинилиденфторид.
Важно минимизировать скорость вращения винта. Для формования тонких и / или длинных деталей можно использовать высокие скорости в сочетании с соответствующим противодавлением. Давление впрыска также должно быть как можно более низким. Стабильность размеров улучшается при понижении давления из-за уменьшения остаточных напряжений в отформованной детали. Давление впрыска может потребоваться увеличить, если требуется улучшение линии шва или уменьшение утяжелений. При выборе давления впрыска всегда следует учитывать конструкцию детали и возможности оборудования.Противодавление следует поддерживать на минимально возможном уровне. Иногда это может помочь повысить температуру продукта.
Скорость впрыска следует выбирать с учетом наименьшего канала, по которому должен течь расплав. Если скорость впрыска слишком велика, поверхность детали будет морозной или шероховатой. Если скорость впрыска слишком низкая, поверхность детали будет иметь рябь. При выборе скорости впрыска следует учитывать все другие переменные в процессе, такие как температура расплава, размер порции и температура формы.
Температура пресс-формы должна выбираться с учетом многих зависимых параметров процесса, включая конструкцию и геометрию детали, качество поверхности, возможность выталкивания, остаточные напряжения и усадку детали. Температура пресс-формы также влияет на время цикла, что важно для производительности машины. Следует избегать очень высоких температур пресс-формы, если деталь имеет толстые стенки. Его можно установить выше, чем обычно, если путь потока в пресс-форме длинный относительно толщины стенок детали.Сообщалось о методе формования тонких деталей, в которой температура формы повышалась выше точки плавления полимера перед началом заполнения [48]. После заполнения формы ее охлаждали ниже точки замерзания полимера. Повышение температуры формы также снижает вероятность расслоения деталей.
Тщательная очистка термопластавтоматов очень важна. Если детали изготовлены из металла, не устойчивого к коррозии, очистка предотвращает коррозию рабочих поверхностей.Остаточный полимер можно удалить путем продувки, что означает запуск машины на материале, способном вытолкнуть фторполимер из машины. Если оборудование изготовлено из коррозионно-стойких металлов, в машине можно оставить продувку. Наиболее эффективная процедура очистки заключается в разборке литьевой машины до того, как расплавленный полимер остынет, чтобы удалить полимер.
Отложения форсунок
Отложения форсунок
Ханну Яэскеляйнен, Алессандро Феррари
Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием.Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.
Реферат : Загрязнение форсунки дизельного топлива включает образование отложений на внешней и / или внутренней поверхности форсунки и форсунки. Факторы, влияющие на отложения в форсунке, включают свойства и химический состав топлива, местную температуру топлива и геометрию форсунки. Для количественной оценки склонности комбинации топлива и топливной форсунки к образованию отложений были разработаны стандартизированные тесты.Отложения в форсунках могут иметь ряд негативных последствий для работы двигателя, включая потерю мощности и увеличение выбросов.
Введение
Загрязнение из-за твердых отложений внутри инжектора дизельного топлива или его форсунки является важной проблемой, с которой сталкиваются форсунки дизельного топлива. Это явление возникает во время старения инжектора и состоит из серии химических реакций, продукты которых откладываются на внешних и / или внутренних металлических поверхностях инжектора и / или сопла.Отложения загрязнений в дизельных форсунках можно в общих чертах классифицировать как отложения на форсунках и внутренние отложения в дизельных форсунках (IDID). Последние также обозначаются как внутренних форсунок (IID).
Факторы, которые влияют на отложения в форсунке, в основном делятся на три категории: (1) свойства и химический состав свойств топлива, (2) локальная температура топлива, имеющая геометрическую форму и (3) сопло форсунки и внутренние смачиваемые поверхности топлива.
Свойства и химический состав топлива. Характеристики топлива, такие как высокая вязкость, низкая летучесть и реакционная способность ненасыщенных углеводородных цепей (олефины, ароматические углеводороды), могут способствовать отложению углерода в отверстиях сопла и образованию выступов на конце сопла инжектора. Было продемонстрировано, что присутствие небольших следов Na, Zn, Cu и Ca в топливе (металлическое загрязнение) значительно усиливает загрязнение сопла, а также внутренние отложения в инжекторе [3006] [2219] .Пакет присадок, диспергированный в топливе, также оказывает важное влияние на загрязнение металлов и, в более общем плане, на закоксовывание форсунок.
Присутствие биодизеля в топливе также может повлиять на образование отложений в форсунках. В некоторых случаях, в зависимости от его детального состава, биодизельное топливо может иметь небольшое влияние на накопление отложений на соплах форсунок [3011] . В других случаях биодизель может способствовать образованию отложений в инжекторах. Биодизельное топливо не только содержит следы металлов, которые могут усилить образование отложений в форсунках, но и продукты окисления биодизеля могут способствовать их накоплению.Карбоновая кислота, образующаяся при окислении биодизельного топлива, может разъедать поверхности железа с образованием слоя соли карбоновой кислоты железа. Этот солевой слой может затем улавливать другие компоненты, содержащиеся в топливе, например полимеры, которые также образуются во время окисления биодизеля [3012] .
Местная температура топлива. Влияние температуры на коксование сопла также существенно [3008] . Было показано, что кинетика реакции термической конденсации и крекинга дизельного топлива увеличивает скорость осаждения в сопле, когда температура превышает примерно 300 ° C.Это значение, по-видимому, является критическим порогом коксования в дизельных двигателях.
Ряд конструктивных параметров двигателя, таких как система рециркуляции отработавших газов и охлаждение наддувочного воздуха, могут влиять на температуру газа в цилиндре и, следовательно, на температуру компонентов, подверженных воздействию газов в цилиндре, таких как форсунка форсунки. Эти конструктивные параметры также могут влиять на загрязнение сопла, поскольку скорости химических реакций, в том числе связанные с образованием отложений в инжекторе, очень чувствительны к температуре.
Геометрия инжектора. Третий фактор, влияющий на накопление отложений в форсунке, — это ее геометрия. Одной из современных тенденций в форсунках Common Rail является увеличение количества отверстий для впрыска (например, с шести до восьми) и уменьшение их диаметра [3009] . Это, вместе с постоянным повышением уровня давления впрыска, стало одним из способов преодоления ограничений по выбросам Евро 5. Однако отверстия инжектора меньшего диаметра усиливают эффект коксования из-за их более высокой чувствительности к засорению.Кроме того, гидравлическое шлифование и сужающиеся отверстия инжектора часто используются в качестве средства улучшения коэффициента расхода сопла и предотвращения кавитации. К сожалению, снижение уровня кавитации может увеличить накопление отложений в отверстиях форсунок. Обычно считается, что кавитация в отверстиях сопла способствует удалению отложений кокса.
Отложения форсунок
Рисунок 1 . Отложения сопла на наконечнике инжектора: (а) «сухой» образец и (б) «влажный» образец.
После старения на топливе, легированном цинком ([Zn] = 6 ppm).
Отложения на соплах были проблемой в течение многих лет [3013] . Эти отложения обычно образуются внутри и вокруг отверстий для потока топлива в форсунке на конце форсунки, рис. 1, и могут иметь несколько важных последствий, в том числе:
- ухудшает форму распыления форсунки (например, снижает проникновение струи и увеличивает асимметрию распыления) и, таким образом, увеличивает выбросы твердых частиц, рис. 2 [3014] .
- на внешней поверхности сопла могут увеличить эффективную площадь поверхности для адсорбции или конденсации углеводородов и, следовательно, привести к более высоким выбросам несгоревших углеводородов.Это может привести к тому, что некоторые отложения на соплах будут выглядеть влажными (Рисунок 1b).
- уменьшение эффективного проходного сечения отверстий сопла при максимальной высоте подъема форсунки и, как следствие, уменьшение максимальной мощности и / или крутящего момента, доступных от двигателя.
Отложения
Благодарности
Авторы выражают свою признательность Полу Ричардсу, который рецензировал эту статью и предоставил ценные отзывы.
###
FAQ — Доктор Инжектор
Один взгляд на топливные форсунки на вашем автомобиле, и вы удивитесь, как они вообще работают, не говоря уже о десятках тысяч миль.Топливные форсунки позволяют нам экономить топливо, в то же время мы развиваем дополнительную мощность и более чистые выбросы.
Единственное, что требуется вашим топливным форсункам взамен, — это постоянный запас чистого бензина. Вот почему топливный фильтр так важен для ваших топливных форсунок — даже крошечный кусочек грязи или грязи может засорить механизм внутри ваших топливных форсунок, поэтому регулярная замена топливного фильтра имеет важное значение. Когда ваш автомобиль покидал завод, он мог быть оснащен топливными форсунками, которые больше ориентировались на экономичность, чем на производительность.С дополнительными топливными форсунками, такими как наши топливные форсунки ACCEL, вы можете изменить это уравнение в сторону мощности.
В попытке не отставать от законов о выбросах и топливной эффективности топливная система, используемая в современных автомобилях, за эти годы сильно изменилась. Subaru Justy 1990 года был последним автомобилем, проданным в США, с карбюратором. В следующем модельном году у Justy был впрыск топлива. Но впрыск топлива применяется с 1950-х годов, а электронный впрыск топлива широко использовался на европейских автомобилях примерно с 1980 года.Теперь все автомобили, продаваемые в США, имеют системы впрыска топлива.
Как работает топливная форсунка?
Форсунка — это не что иное, как быстродействующий клапан для бензина. Компьютер или контроллер двигателя используется для управления топливной форсункой. Вопреки распространенному мнению, это не происходит путем подачи питания на инжектор. Топливные форсунки обычно получают питание всякий раз, когда ключ зажигания включен. Компьютер контролирует отрицательную или заземленную сторону цепи. Когда компьютер заземляет форсунку, цепь замыкается, и ток проходит через форсунку.Это возбуждает электромагнитную катушку внутри инжектора, которая оттягивает уплотняющий механизм (иглу, шарик или диск) от его гнезда. Это позволяет топливу течь через форсунку в двигатель. Когда компьютер удаляет электрическое заземление форсунки, электромагнитная катушка размагничивается, и пружина заставляет штифт, шар или диск закрыться, чтобы перекрыть поток топлива. Даже при частоте вращения двигателя всего 1000 об / мин это происходит сотни раз в минуту.
Что означают термины «статический» и «рабочий цикл»?
Форсунка двигателя включается и выключается очень быстро, чтобы контролировать количество подаваемого топлива.Продолжительность включения форсунки и подачи топлива называется рабочим циклом. Это измеряется в процентах, поэтому 50% рабочего цикла означает, что форсунка остается открытой и закрытой в течение равного времени. Когда двигателю требуется больше топлива, время, в течение которого форсунка остается включенной (ее рабочий цикл), увеличивается, так что в двигатель может поступать больше топлива. Если форсунка остается включенной все время, она считается статической (полностью открытая или 100% рабочий цикл). Форсунки не должны становиться статичными при работающем двигателе.Если форсунка в работающем двигателе статична (открыта 100% времени), эта форсунка больше не может контролировать подачу топлива. Это может быть признаком того, что форсунка слишком мала для нужд двигателя. Рабочий цикл форсунки обычно не должен превышать 80% при работающем двигателе в любое время.
Что такое импеданс?
Импеданс — это электрическое сопротивление электромагнитной катушки внутри форсунки. Оно измеряется в омах и может быть определено омметром. Форсунки подразделяются на высокоимпедансные (также известные как «насыщенные») и низкоомные (известные как «пиковые и удерживающие»).Инжекторы с высоким импедансом обычно имеют импеданс от 11 до 16 Ом, а инжекторы с низким импедансом — от 0,7 до 5 Ом (эти значения импеданса основаны на том, что в настоящее время доступно на потребительском рынке, и могут быть изменены). Большинство компьютеров двигателей OEM предназначены для управления топливными форсунками с высоким сопротивлением. Форсунки с низким сопротивлением обычно предпочтительны для гонок или использования со сверхвысокой производительностью, потому что они реагируют быстрее, но для управления ими обычно требуются контроллеры двигателей вторичного рынка.
Каков статический расход инжектора?
Производители оценивают топливные форсунки по максимальному количеству топлива, которое они могут подать за заданный промежуток времени. Это измерение проводится при 100% включении форсунки (100% рабочий цикл или полностью открытый) и при заданном давлении топлива (обычно 43,5 фунта на квадратный дюйм). Например, форсунка со скоростью 19 фунтов в час (фунт / час) подает 19 фунтов топлива за один час при 100% рабочем цикле и давлении топлива 43,5 фунта на квадратный дюйм. Форсунки в импортных автомобилях часто измеряются в кубических сантиметрах в минуту (куб.см / мин), а не в фунтах в час.Это также делается при 100% рабочем цикле.
Если рабочий цикл форсунок не должен превышать 80% в рабочих условиях, почему производители оценивают их как 100% рабочий цикл?
Испытание при 100% рабочем цикле используется для определения максимального количества топлива, которое будет протекать через форсунку за заданное время. Этот тест полезен для определения того, правильно ли были обработаны внутренние топливные каналы форсунки, но он не проверяет способность форсунки включаться или выключаться. Обычно не рекомендуется запускать инжектор при рабочем цикле более 80% в реальных условиях движения.Этот рабочий предел рабочего цикла 80% учитывается, чтобы убедиться, что форсунка будет достаточно большой для питания двигателя в реальных условиях эксплуатации и не будет лишать двигатель топлива.
Вы ремонтируете топливные форсунки?
№. В рамках обслуживания топливных форсунок мы очищаем и тестируем форсунки клиента и заменяем обслуживаемые компоненты (уплотнительные кольца, впускные фильтры и т. Д.). Мы не модифицируем и не изменяем какие-либо внутренние компоненты форсунки.Эти внутренние компоненты (обмотки, штифт и т. Д.) Обычно не обслуживаются. Если они повреждены, инжектор следует заменить.
Можете ли вы изменить форсунки, чтобы увеличить их статический расход?
Абсолютно нет. Иногда можно увеличить статический расход форсунки при заданном давлении путем механической обработки или увеличения стержня или внутренних каналов форсунки. Однако эта процедура обычно не самая лучшая идея! Топливная форсунка включается и выключается тысячи раз в минуту, чтобы подать в двигатель необходимое количество топлива.Из-за этого электромагнитная катушка и стержень инжектора очень тщательно согласованы друг с другом. Изменение иглы или других частей форсунки может привести к тому, что она будет пропускать больше топлива на пределе (широко открытом или статическом), но при более низких оборотах двигателя форсунка будет крайне нестабильной. Это создает проблемы с управляемостью, колебания холостого хода, более высокие выбросы, условия богатой / обедненной смеси и т. Д. Мы провели обширные лабораторные испытания многих модифицированных форсунок и пока не нашли ни одной, которая работала бы так же хорошо, как неизмененная форсунка той же мощности.
Что входит в обслуживание форсунок?
Форсунки
проверяются на правильность их работы. Его расход и форма распыления топлива проверяются, чтобы определить, правильно ли он работает, и проверяется его полное сопротивление. Затем инжектор очищается и промывается, а все обслуживаемые детали, такие как уплотнительные кольца, уплотнения и пластиковые колпачки игл, заменяются. После этого инжектор повторно тестируется, чтобы выявить любые улучшения в производительности, связанные с обслуживанием. Все измерения и информация, собранные во время тестирования, записываются в аналитическую ведомость, которая отправляется заказчику вместе с инжектором.Когда предусмотрено несколько форсунок, форсунки также проверяются относительно друг друга, чтобы убедиться, что они соответствуют по производительности.
Итак, если вам нужны топливные форсунки, приходите к нам по лучшим ценам и лучшему выбору в любом месте.
Оптический анализ влияния геометрии отверстия форсунки на смесеобразование в бензиновых двигателях с прямым впрыском
Макроскопические параметры распыления
Типичная последовательность изображений распыления жидкого топлива для форсунки V1-1 показана на рис.3. Для каждого временного интервала определялись проникновение S , угол распыления α на двух расстояниях от наконечника сопла (10 и 15 мм) и площадь распыления. На рис. 3 сравнивается пенетрация как среднее значение десяти процессов впрыска с геометрией отверстия форсунки, проверяемой при давлении топлива 50 и 200 бар.
Рис. 3
Распылительные изображения форсунки V1-1 в представлении ложных цветов, \ (p _ {\ text {Rail}} = 200 \) bar, \ (t_ {i} = 1 \, {\ text {ms}} \) в разное время после начала закачки
По сути, рис.4 показывает нам, что увеличение давления впрыска приводит к большему увеличению кривой проникновения и, следовательно, к более высокой скорости фронта распыления. Таким образом, скорость распыления соответствует скорости Бернулли (рассчитывается по формуле \ (v _ {\ text {Bernoulli}} = \ sqrt {\ frac {2} {\ rho} \ left ({p _ {\ text {Rail}} — p_ { \ text {Ambient}}} \ right)} \) в отверстии форсунки, что в первую очередь определяется разницей давления между входом в отверстие форсунки и выходом из отверстия форсунки. Кроме того, мы можем видеть, что тенденции между геометрией отверстий форсунки при давлении топлива 50 бар усиливаются при давлении топлива 200 бар.
Рис. 4
Кривая проницаемости форсунок различной геометрии при давлении топлива 50 и 200 бар
Глядя на цилиндрическую геометрию (V1-1 и V1-2), см. Рис. 4 выше, мы видим, что меньший диаметр отверстия инжектора приводит к большему подъему кривой проникновения. Частично это связано с саморегулирующимся давлением в глухом отверстии. Больший диаметр отверстия форсунки приводит к усиленному падению давления и, таким образом, меньшей разнице давлений между входом и выходом отверстия форсунки.По словам Бернулли, это приводит к снижению скорости подачи топлива. С другой стороны, результат можно объяснить углом распыления или площадью распыления. Поскольку угол распыления, который показан на рис. 5 как среднее значение за период впрыска, и площадь распыления, см. Рис. 6, также имеют значительно большие значения, сопротивление потоку распыляемого материала относительно окружающей среды увеличивается. Это приводит к снижению скорости распыления.
Рис. 5
Средний угол распыления форсунок различной геометрии при давлении топлива 50 бар
Фиг.6
Площадь распыления жидкой фазы сопла любой формы при давлении топлива 50 и 200 бар
Проходки расходящейся геометрии (V2-X), как показано на рис. 4, по существу такие же, как проходки цилиндрической геометрии (V1-1). Однако четкой зависимости проникновения от фактора k нет. Наименьшее расхождение также имеет наименьшую скорость проникновения или проникновения. С другой стороны, средний коэффициент k обеспечивает самую высокую скорость распыления и самую большую глубину проникновения среди всех расходящихся форсунок.При дальнейшем увеличении дивергенции (V2-3) проникновение снова уменьшается. Аналогичное поведение можно наблюдать в отношении угла распыления (рис. 5). На обоих расстояниях от наконечника сопла среднее расхождение имеет наименьший угол распыления. Угол распыления больше как с малым, так и с большим коэффициентом k . Причины этого не могут быть четко объяснены на основе ранее доступных данных измерений. Одна из возможностей — это поведение потока в отверстии инжектора, которое сильно зависит от профиля геометрии, регулирующей поток.Предполагается, что чрезмерное расхождение приводит к отрыву потока от стенок, что существенно влияет на параметры потока. Это предположение подтверждается тем фактом, что вершина угла распыления является центральной точкой выхода отверстия форсунки. Когда поток прилегает к стенкам, тогда из-за увеличенного выходного диаметра уже должен быть увеличенный угол распыления, в частности, в варианте V2-3. Однако этого нельзя различить, и поэтому требуется дальнейшее исследование.
В принципе, можно констатировать, что ступенчатые форсунки имеют наименьшее проникновение (рис.4) и наибольший угол распыления (рис. 5) из всех вариантов геометрии. Однако, поскольку эффект уменьшения проникновения преобладает, ступенчатая геометрия отверстий инжектора имеет наименьшую площадь распыления из всех геометрий сопла. Кроме того, можно констатировать, что варианты ступенчатого инжектора имеют очень неустойчивую кривую проникновения. Между отдельными кривыми есть перекрытия. Таким образом, геометрия V3-1 с самым коротким отверстием для форсунки имеет наименьшее проникновение вскоре после открытия форсунки.По мере продолжения фронта распыления эта геометрия испытывает меньшее замедление, что приводит к увеличению проникновения. Однако максимальное проникновение сопла значительно ниже, чем глубина проникновения более длинных вариантов отверстия инжектора. По мере увеличения длины отверстия инжектора (V3-2 и V3-3) скорость проникновения также увеличивается, и происходит приближение к линейной кривой проникновения. Эта характеристика также описана в литературе [13]. В то же время происходит уменьшение среднего угла распыления, зависимость которого от длины отверстия инжектора дифференцированно описывается в справочных материалах [14, 15].Турбулентность в отверстии инжектора считается причиной увеличения проникновения и уменьшения угла распыления по мере увеличения длины отверстия инжектора. Увеличение турбулентности вызвано, в частности, кавитацией, возникающей на входе в отверстие форсунки с острыми краями. Когда длина отверстия форсунки мала, нет времени для успокоения потока, в результате чего на выходе из отверстия форсунки с небольшими отношениями l / D возникают повышенная радиальная и пониженная осевые компоненты скорости, которые вызывают описанные явления.Однако уменьшенная эффективная длина отверстий для форсунок также приводит к уменьшению потерь на трение на стенках отверстий для форсунок. Комбинация этих механизмов может привести к описанным эффектам перекрывающихся кривых пенетрации с различными соотношениями l / D .
Варианты с конвергентными отверстиями для форсунок (V4-X) имеют кривые проникновения, которые очень похожи на кривые для цилиндрических и расходящихся вариантов. Как при давлении топлива 50, так и 200 бар наблюдается явное увеличение скорости проникновения форсунки V4-2.Схождение приводит к ускорению топлива и, таким образом, к увеличению скорости выхода и увеличению глубины проникновения. Рисунок 5 также показывает, что угол распыления зависит от конусности. По мере увеличения коэффициента k угол распыления уменьшается примерно на 20%. Во многом это связано с сужением потока на выходе из форсунки. Слегка сужающаяся форсунка, по сравнению с другими геометрическими формами, имеет значительно большую площадь распыления, в частности, при давлении впрыска 200 бар.Это видно по хорошему разбрызгиванию топливного спрея. С другой стороны, сопло с высокой степенью сужения имеет значительно меньшую площадь распыления. Следует отметить, что из-за значительного сужения расход уменьшается, и, таким образом, вариант V4-2 впрыскивает значительно меньшее количество топлива в течение постоянной продолжительности срабатывания 1 мс. Именно эта пониженная плотность распыления приводит к наблюдаемой меньшей площади распыления. Это не позволяет делать какие-либо выводы о качестве распыления.
Диаметр капли, который был определен на 30 мм ниже наконечника инжектора, также различается в зависимости от геометрии сопла.На рис. 7 сравнивается средний арифметический диаметр капель для различных вариантов. Сопло V1-2, имеющее наибольший диаметр основного отверстия, также имеет наибольший диаметр капель. Это согласуется с литературой, в которой диаметр отверстия инжектора указан как главный критерий размера капли [16–19]. Это также является причиной наименьшего диаметра капель сопла V4-2, которое имеет наименьший выходной диаметр из всех вариантов. Однако эту теорию нельзя применить к соплам с расходящейся геометрией.Можно убедиться, что для диаметра капли решающим фактором является не выходной диаметр, а наименьший ограничивающий диаметр. В случае расходящихся отверстий форсунок это входной диаметр. Различия между остальными геометриями очень незначительны. Тем не менее, можно выделить очень похожие тенденции, например, при анализе проникновения и угла распыления. Таким образом, отверстие инжектора со средней дивергенцией имеет наименьший средний диаметр капли как из расходящихся форсунок, так и из форсунок с одинаково малым диаметром отверстия форсунки.Диаметр капель и площадь распыления форсунки V2-2 указывают на оптимальное дробление распыляемой жидкости благодаря геометрии отверстия форсунки.
Рис.7
Средний диаметр капли D10 при давлении топлива 200 бар
Микроскопические параметры распыления
Распад распыления, который происходит возле сопла, так называемое первичное дробление, имеет решающее значение для вторичного дробления распыления, которое происходит вдали от сопла. Первичный распад спрея — это распад жидкого связного спрея на первые связки и крупные капли.Основное влияние на это оказывают аэродинамические взаимодействия, турбулентность, релаксация профиля и кавитация [20]. Используя микроскоп в дальней зоне, можно визуализировать эту область очень близко к кончику сопла (примерно 3,5 × 2,5 мм). Ниже представлены результаты измерений для оценки влияния геометрии отверстия форсунки на дробление первичного распыления.
На рисунке 8 сравниваются изображения времени одного впрыска (0,8 мс после начала впрыска) для всех инжекторов. Чтобы учесть циклические колебания, бинаризованные изображения десяти процессов инжекции были суммированы.На изображениях видно, что как увеличенный диаметр отверстия сопла (V1-2), так и уменьшенная длина отверстия форсунки (V3-X) значительно увеличивают площадь распыления. Это связано, с одной стороны, с увеличенным массовым расходом (сопло V1-2), а также с повышенной турбулентностью и, таким образом, с усиленным развитием струи (сопло V3-X). Однако, поскольку форсунка V3-3 с наибольшим соотношением l / D имеет самое сильное распыление из ступенчатых форсунок, длина отверстия форсунки не может быть единственной причиной.Можно предположить, что как диаметр ступеньки, так и отношение глубины ступени к диаметру ступеньки оказывают значительное влияние на энергию проявления струи.
Рис. 8
Первичное проявление распыления различных вариантов форсунки при давлении впрыска 100 бар, всего десять изображений, сделанных через 0,8 мс после начала впрыска
Слегка сужающаяся форсунка (V4-1) имеет значительно меньшие циклические отклонения в течение всего периода впрыска, что связано с известными эффектами технологии впрыска дизельного топлива: из-за конвергенции давление воздушного потока в отверстии форсунки увеличивается, расход успокаивается, а кавитация ограничивается.Это контрастирует с увеличением площади распыления и циклическими колебаниями сопла V4-2 с коэффициентом k , равным +5. Из-за значительной сходимости увеличивается скорость выхода, что является основным критерием развития распыления. На изображениях видно, что угол распыления значительно больше. Другой причиной может быть увеличение радиальных составляющих скорости из-за перетока в отверстии форсунки.
Количественная оценка разрыва струи около сопла проведена по рис.9. Показаны временные кривые площади распыления и характеристики распыления размера капель для всех вариантов сопел, исследуемых при давлении впрыска 100 бар. На схемах хорошо видны фазы впрыска. Первые капли обнаруживаются примерно через 0,23 мс после начала впрыска. Следует отметить, что капли, обнаруженные до этого времени, вызваны фоновым шумом или отражениями и из-за очень небольшого количества обнаруженных частиц при оценке диаметра капель интерпретируются чрезмерно.Это приводит к резкому увеличению размера капель и площади распыления. Эта фаза максимального размера капель и площади распыления вызвана дросселированием седла иглы и связанной с ними турбулентностью и кавитацией внутри отверстия инжектора. Явление дросселирования седла иглы и связанные с ним эффекты уже подробно описаны в ссылках [21]. После полного открытия иглы площадь распыления и диаметр капли принимают постоянные значения. Фаза закрытия (от 1,1 мс) также определяется небольшими преувеличениями на кривых для площади распыления и резким увеличением размера капель.Причиной этого является потеря импульса распыления, вызванная дросселированием седла иглы и падающим потоком из форсунки. Через отверстие инжектора выходят крупные связки, имеющие небольшую округлость. Из-за низкой скорости подачи топлива силы, действующие на каплю, и аэродинамическое взаимодействие с окружающим воздухом незначительны.
Рис. 9
Сравнение временной кривой размера капли и площади распыления в области около сопла для всех исследованных форсунок при давлении впрыска 100 бар
На этом этапе используется только фаза постоянного открытия иглы для дальнейшей характеристики развития распыления и для сравнения отдельных вариантов форсунок (\ (t = 0,6 \ ldots 1,0 \, {\ text {ms}} \)).Следует еще раз отметить, что диаметр капель обычно очень мал (4–8 мкм). Это связано с методом оценки, который позволяет обнаруживать только капли, четко отделенные от фона. Крупные капли и связки, которые возникают в плотном топливном тумане, не могут быть обнаружены и, таким образом, уменьшают измеренный диаметр капель по сравнению с фактическим диаметром капли.
Рисунок 9 также показывает, что ступенчатая форсунка V3-3, которая очень бросалась в глаза на изображениях распыления, также выделяется среди других форсунок в этой количественной оценке.Он имеет значительно большую площадь распыления, а также значительно больший диаметр капель. Площадь распыления других ступенчатых форсунок V3-1 и V3-2 также четко выделяется на фоне остальных форсунок, но эти форсунки имеют значительно меньшие капли, чем форсунка V3-3. Это подтверждает предположение о том, что, помимо соотношения l / D , ступенчатая геометрия играет ключевую роль в разбивке струи.
Сравнение расходящихся форсунок показывает, что, как и на изображениях распыления, нет заметной тенденции между вариантами.Площадь распыления для варианта V2-3 минимальна. Сопло V2-2 имеет максимальную площадь распыления, а сопло V2-1 с наименьшим расхождением находится между этими двумя вариантами. Это подтверждает предположение о том, что механизмы разрушения не имеют линейной зависимости от дивергенции, но есть точка возврата, которая связана с возникновением отрыва от стенки отверстия инжектора. В отличие от расходящихся сопел диаметры капель практически не различаются.
Цилиндрическое отверстие форсунки (V1-1) имеет наименьшую площадь распыления из всех форсунок, хотя диаметр капель находится на том же уровне, что и в расходящихся вариантах.По мере увеличения диаметра сопла (V1-2) площадь распыления и диаметр капель также увеличиваются. Это также было заметно по макроскопическим параметрам распыления.
Конвергентные форсунки отличаются широким диапазоном диаметров капель и площадей распыления. Сопло V4-2 с диаметром приблизительно 5,8 мкм имеет второй по величине средний диаметр капель среди всех сопел, в то время как вариант V4-1 с диаметром 4,2 мкм имеет наименьший средний диаметр капель. Аналогичный результат можно получить, анализируя площадь распыления, поскольку форсунка с большим коэффициентом k имеет значительно увеличенную площадь распыления.Это позволяет нам сделать вывод, что конвергенция вызывает сильные механизмы распада. Следует отметить, что существует противоречивая тенденция при измерении диаметра капель сужающегося сопла с помощью КПК и микроскопа в дальней зоне. Необходимо определить, что диаметр капли около сопла не может быть напрямую связан с диаметром капли в дальней зоне. Сильный разбрызгивание струи возле выхода из сопла, приводящее к образованию больших капель, может положительно повлиять на механизм вторичного разбивания.
Прозрачные сопла
Используя прозрачные сопла, можно было охарактеризовать поток внутри сопел.На рис. 10 сравнивается поток внутри форсунок в выбранные моменты времени (открытие иглы, стационарная фаза и закрытие иглы) и геометрия отверстия форсунки при давлении впрыска 100 бар. Понятно, что при любой геометрии в отверстии форсунки есть тени, т.е. кавитация. Как и ожидалось в соответствии с анализом распыления, мы видим, что при открытии иглы происходит дросселирование седла иглы, и в результате этого в глухом отверстии возникает кавитация, которая затем распространяется на все отверстие инжектора в виде пленочной кавитации.Из-за интегративного метода измерения, применяемого в технике силуэтов, нельзя сделать вывод о толщине кавитационной пленки на основе результатов измерений. Требуются дальнейшие тесты. Однако следует отметить, что кавитация возникает даже при геометрии V4-2. В области технологии впрыска дизельного топлива для предотвращения кавитации успешно используется сходящаяся геометрия отверстия форсунки. Понятно, что сильного схождения и, следовательно, увеличения давления воздушного потока недостаточно для предотвращения кавитации в существующих здесь условиях.Причина этого может заключаться в свойствах жидкости. Изооктан (\ (p_ {D} = 0,0439 \, {\ text {bar}} \)) имеет значительно более высокое давление пара, чем дизельное топливо (\ ({\ text {ca}}. P_ {D} = 0,0005 \ , {\ text {bar}} \)). Кроме того, у дизельных форсунок закруглена острая входная кромка. При использовании сопел, используемых здесь, происходит значительное отклонение в области острого входного края и внезапное сужение потока жидкости, что способствует возникновению кавитации даже при самом низком давлении нагнетания (\ (p _ {\ text { Рельс}} <50 \, {\ text {bar}} \)).
Рис. 10
Силуэты внутреннего потока в сопле выбранной геометрии при давлении впрыска 100 бар
Обслуживание инжектора
SP63 — SPEED PERF6RMANC3
Maecenas placerat ipsum vitae elementum vulputate. Morbi lacinia libero lorem, in dignissim ante convallis at. Pellentesque обитатель morbi tristique senectus et netus et malesuada fames ac turpis egestas. Sed in purus vulputate sem tempor tincidunt ac sed turpis
Neque porro quisquam est qui dolorem ipsum quia dolor sit amet
Lorem ipsum dolor sit amet, conctetur adipiscing elit.Nulla at venenatis eros. Nulla efficitur, orci ut cursus consctetur, nisi elit convallis odio, non hendrerit arcu toror aliquet eros. Nullam imperdiet diam ut neque ullamcorper semper. Mauris consquat ex sed elit venenatis, eu varius nulla posuere. Nullam gravida mattis velit, id Commodo nunc rhoncus ut. Phasellus congue felis toror, nec eleifend lacus tincidunt vitae. Nullam dapibus tempus tempor. Maecenas massa neque, tempus in efficitur at, scelerisque sed мучитель. Morbi vulputate ipsum odio, non posuere sem suscipit accumsan.Cras fermentum nunc quis tempor iaculis. Praesent dictum augue sit amet neque faucibus, ac varius enim convallis. Curabitur volutpat ligula sit amet nibh vehicleula egestas. Etiam eget dolor ipsum. Phasellus varius, metus sit amet aliquet tempor, erat ante rhoncus magna, quis vehicleula tor nunc at ipsum. Duis vitae erat vitae turpis cursus pretium. Quisque pulvinar sapien at mi efficitur, sed faucibus nulla accumsan.
Ut a leo interdum, imperdiet ante quis, euismod quam. Nam eget auctor risus.В bibendum диам. Curabitur non lectus pharetra, maximus dolor mattis, auctor dolor. Maecenas placerat ipsum vitae elementum vulputate. Morbi lacinia libero lorem, in dignissim ante convallis at. Pellentesque обитатель morbi tristique senectus et netus et malesuada fames ac turpis egestas. Sed in purus vulputate sem tempor tincidunt ac sed turpis. Pellentesque erat justo, feugiat eget vestibulum molestie, cursus ac ex. Phasellus magna enim, placerat non lacus varius, cursus conctetur urna
Phasellus finibus nulla vitae malesuada efficitur.Pellentesque обитатель morbi tristique senectus et netus et malesuada fames ac turpis egestas. Phasellus sed pharetra risus. Quisque ante sem, faucibus id velit eget, bibendum sodales purus. Donec congue ipsum leo, aliquet aliquam lectus suscipit et. Pellentesque viverra, enim et pulvinar aliquet, dolor magna gravida lectus, sit amet pellentesque turpis elit id enim. Nulla a lectus viverra, ultricies urna ac, cursus turpis.