Можно ли долить электролит в аккумулятор: Новости компании Автобатарея г Пермь

Содержание

Можно ли доливать электролит в аккумулятор: мнение экспертов

Когда автомобиль отказывается заводиться, первое, что приходит на ум, — всё ли в порядке с аккумулятором? Вероятно, он разрядился. Можно ли доливать электролит в аккумулятор или лучше воду?

Из чего состоит аккумулятор

Аккумуляторная батарея в автомобиле отвечает за запуск двигателя, исправную работу всей электрики автомобиля, а также «сглаживает» скачки напряжения. Внутри корпуса она представляет собой 6 последовательно соединённых элементов, состоящих из положительных и отрицательных токопроводящих пластин. Эти элементы залиты электролитом, взаимодействие с которым и обеспечивает результат работы.

Сама же жидкость состоит из дистиллированной воды и кислоты, смешанной в определённой пропорции. Нормы пропорций изменяются в зависимости от необходимой плотности смеси, а нормы плотности смеси, в свою очередь, зависят от температурных и климатических особенностей местности использования автомобиля.

Немного теории

Норма плотности электролита в АКБ для средней полосы России — 1,25—1,30 г/см. куб. Идеально, если показатель равен 1,28г/куб. см. Если, например, батарея перемёрзла или закипела, то плотность электролита изменится в одну или другую сторону, что приведёт к той самой быстрой разрядке аккумулятора. В таком случае необходимо найти причину проблемы и устранить её.

В поисках главным помощником будет ареометр — специальный прибор, с помощью которого и определяется плотность электролита.

Ареометр, определяющий плотность электролита

Чтобы воспользоваться им, в первую очередь откручивают круглую заглушку с каждого из отсеков аккумулятора, опускают прибор в жидкость и смотрят получившиеся показания.

Важно проверить каждый из отсеков!

Стоит также помнить, что эти манипуляции проводятся на не работающем в момент проверки устройстве.

Ещё один момент — жидкость должна на 1–1,5см закрывать элементы батареи. Если уровень жидкости меньше, то её доливка срочно необходима.

Ближе к практике

Если с определением проблемы всё понятно, то назревает вопрос: что доливается в аккумулятор – вода или электролит? С ответом поможет результат измерений ареометром: если раствор слишком плотный, то долив воды решит проблему. Если же раствор обладает слишком низкой плотностью, то без электролита не обойтись.

Разберёмся с водой. Почему так важно доливать дистиллированную или, на крайний случай, талую воду? Дело в том, что в бутилированной воде или воде из крана содержатся примеси, которые при взаимодействии с электричеством будут давать как минимум осадок, а в худших случаях приведут к полной негодности АКБ. Поэтому необходима максимально очищенная вода.

Для долива воды понадобится обыкновенная воронка, последующая зарядка аккумулятора и повторная проверка плотности получившейся смеси.

Жидкие подробности

Если говорить о доливе электролита, то здесь последовательность действий длиннее.

Стоит начать с изготовления необходимой смеси в домашних условиях:

  1. Берётся неметаллическая тара, в которую выливается 1 литр дистиллированной воды.
  2. Затем в неё, медленно и частями, не забывая перемешивать, вливают 0,36 литра аккумуляторной кислоты.
  3. Не стоит вливать жидкости наоборот, так как это чревато последствиями химической реакции.
  4. Затем стоит дать отстояться пару часов получившейся смеси – и необходимая жидкость готова.

Следующий этап — проверка текущего уровня электролита. Возьмите стеклянную трубочку, опустите её в жидкость и закройте верхний конец пальцем. Вытащите трубочку: количество жидкости в колбе показывает уровень электролита в аккумуляторе.

Если плотность недостаточная, то электролитическую жидкость доливают в каждый отсек АКБ, так, чтобы её уровень в каждом отсеке был одинаковым. В случае, если возникают трудности – излишки удаляются при помощи медицинской “груши”.

Однако в ситуациях, когда доливкой не обойтись, — например, в случае, когда плотность электролита близка к 1г/куб. см. или даже меньше, — совершаются действия по восстановлению батареи. Из батареи удаляется старая жидкость, тщательно промывается каждая колба дистиллированной водой, затем заливается новый электролит с необходимой плотностью до нужного уровня (5–7мм выше пластин).

Затем, не закручивая колпачки, стоит дать постоять свежезалитому аккумулятору около 3-х часов, чтобы вышли пузырьки воздуха. Стоит ещё раз проверить плотность электролита, долить воды, если это необходимо. Далее аккумулятор полностью заряжается при помощи низкого тока — около 0,1 А. Процесс будет не слишком быстрым, но позволит продлить срок службы устройства.

Необслуживаемый АКБ — на выброс

Встречаются аккумуляторные батареи в цельной оболочке — ни о каком обслуживании вроде долива жидкостей не может быть и речи. Или может?

Если такая батарея работает уже свыше четырёх лет, то, скорее всего, в негодность пришли уже сами пластины, и даже замена электролита не спасёт положения. Но «свежие» АКБ не так безнадёжны. Для выявления их внутреннего мира высверливаются небольшие отверстия в корпусе, через которые получится как выяснить плотность жидкости, так и произвести её замену.

Технология действий останется такой же, как и в случае с обслуживаемым аккумулятором, с той разницей, что в конце отверстия необходимо будет закрыть эпоксидным клеем или любым другим материалом, который хорошо подойдёт для пластика и не боится высоких температур.

Стоит также отметить, что у необслуживаемых аккумуляторов зачастую есть возможность визуально отслеживать уровень жидкости.

Когда что-то идёт не так

Что обычно доливают в аккумулятор при понижении в нём уровня электролита? Всё зависит от плотности имеющейся жидкости, возможных вариантов всего два. При этом стоит понимать, по какой причине уровень понижается: возможно, происходит постоянное закипание электролита и из него выкипает вода? В таком случае нужно доливать дистиллированную воду и искать причину закипания.

Или же уровень электролита понизился потому, что АКБ перевернулся с неплотно закрученными шайбами и жидкость просто вылилась? Тогда однозначно необходимо долитие электролита.

В любом случае необходимо искать причины «неправильного» поведения жидкости. Если их вовремя не обнаружить и не устранить, то не исключены и возможные последствия — вплоть до произвольного нарушения целостности пластикового короба аккумулятора.

Важно помнить, что после полной смены электролита батарея не сможет служить верой и правдой очень долго — из-за контакта с воздухом повышается риск развития процессов коррозии на пластинах.

О многом может поведать и состояние сливаемого электролита: если в жидкости есть какие-то примеси, она имеет мутный или явно тёмный цвет, то не исключён факт того, что именно металлические элементы уже пришли в негодность и пластины разрушаются от времени эксплуатации. Конечно, замена электролита поможет и тут, но ненадолго. При этом может понадобиться и очистка самих пластин.

Подводя итоги

Изучив подробнее работу штатного АКБ автомобиля, вопрос «Можно ли доливать электролит в аккумулятор?» отпадает сам собой: можно, если нужно! Главное в этом процессе – внимательно следить за показателем плотности электролита, его уровнем, а также цветом и прозрачностью, так как это может быть признаком куда более серьёзных проблем.

Особенно важно всегда помнить, что вода обязательно должна быть именно дистиллированной, то есть очищенной ото всех примесей. В противном случае существует вероятность скорой порчи аккумулятора, а то и некоторых деталей автомобиля.

К слову, бутилированная вода также не может считаться достаточно чистой, так как содержит достаточное количество примесей. Не стоит забывать и о зарядке аккумулятора после любых манипуляций, лучше всего малым током, но дольше.

При встрече с гелевым аккумулятором повышение уровня электролита производится при помощи воды — она добавляется под каждый колпачок примерно по 1–1,2 мл, аккумулятор оставляется на несколько часов, чтобы впиталось недостающее до нормы количество влаги, а затем оставшиеся излишки удаляются.

Помните, что исправный аккумулятор автомобиля предотвращает возможность возникновения неприятностей в дороге.

Обслуживание аккумуляторов — F.A.Q.

 

 

 

 

Когда возникает необходимость долива воды в аккумуляторы? 

Вода в батарее расходуется во время подзарядки. Таким образом, подходящий момент для долива воды – сразу после полного заряжения. Но если уровень электролита критически мал настолько, что пластины подвергаются воздействию воздуха, перед подключением ЗУ в аккумулятор следует добавить воды.

Вверх ↑

Как часто потребуется доливать воду в аккумуляторы?

Частота долива воды напрямую зависит от интенсивности эксплуатации батарей. Например, рыболову, раз в неделю выезжающему на моторной лодке, вполне достаточно ежемесячного пополнения электролита. Руководителю полей для игры в гольф, для обеспечения бесперебойного питания электромобилей, может потребоваться еженедельный долив воды в аккумуляторы. Жаркий климат служит фактором повышающим частоту долива. Оптимально вести постоянное наблюдение за уровнем воды в новых батареях. Это позволит наиболее точно определить временной промежуток расхода электролита и частоту его долива.

ВАЖНО: Уровень воды в новых батареях может быть низким. Зарядите их прежде чем пополнить ее уровень. Преждевременный долив может стать причиной переполнения электролита.

Вверх ↑

Каким должен быть оптимальный уровень электролита?

Уровень жидкости должен быть на 1/8 дюйма (3,17 мм) меньше нижнего края вентиляционного отверстия (пластиковая трубка выходящая внутрь аккумулятора). При этом вода должна полностью покрывать верхний край пластин.

Вверх ↑

Вы когда ни-будь доливали кислоту в аккумулятор?

В режиме нормальной эксплуатации не требуется долив кислоты. Для пополнения нужно использовать дистиллированную или деионизированную воду до уровня, рекомендованного в предыдущих ответах. Если батарея поставляется в сухом виде или произошла аварийная утечка электролита, обязательно нужно его восполнить. После чего от вас потребуется лишь контролировать его уровень и по необходимости добавлять.

Вверх ↑ 

Каким должно быть оптимальное значение крутящего момента для подключения моей батареи?

С жидким электролитом:

Автомобильная: 50-70 дюймов/фунт (2,79-3,92 м/кг)

Гайка-барашек: 95-105 дюймов/фунт (5,32-5,88  м/кг)

LPT: 95-105 дюймов/фунт (5,32-5,88  м/кг)

Stud: 120-180 дюймов/фунт (6,72-10,08  м/кг)

LT: 100-120 дюймов/фунт (5,59-6,72  м/кг)

VRLA:

Button: 90-100 дюймов/фунт (5,04-5,59  м/кг)

LT: 100-120 дюймов/фунт (5,59-6,72  м/кг)

ВАЖНО: Не допускайте перетягивание крепежных элементов. Это может стать причиной поломки, последующего плавления и возгорания.

Вверх ↑

Батарея может замерзнуть?

Единственное состояние, когда аккумулятор может замерзнуть, если он частично или полностью разряжен. В кондиции пониженного заряда батареи электролит превращается в обычную воду, с присущей ей температурой замерзания. Температура для кристаллизации электролита в заряженном состоянии составляет -92° F (-68,9° С). Для электролита в заряженном на 40% аккумуляторе этот показатель равен 16° F (-8,9° C).

Вверх ↑

Каков удельный вес полностью заряженного аккумулятора?

Показатель ареометра 1,277 или выше, свидетельствует о полном заряде батареи. Данное утверждение справедливо при температуре окружающей среды 77-80° F (25-26,7° С). Для корректировки температурных значений обращайтесь в подраздел меню FAQ «Температура».

Вверх ↑ 

С какими ошибками чаще всего сталкиваются владельцы свинцово-кислотных аккумуляторов?

Недозарядка: В общих случаях причина заключается в том, что владелец не выдерживает ЗУ подключенным к батарее до ее полного заряжения. Систематическое использование недозаряженной батареи или хранение ее в разряженном виде, приводит к образованию сульфата свинца на пластинках кислотного аккумулятора. Данный процесс называется сульфатацией. Как результат – снижение производительности и преждевременный выход из строя аккумулятора. Неполная зарядка также способствует стратификации (расслоению).

Перезарядка: Непрерывный заряд вызывает ускоренную коррозию положительных пластин, чрезмерное потребление воды, а в некоторых случаях, температурное повреждение свинцово-кислотных батарей. Аккумуляторы глубокого цикла следует полностью заряжать после каждой разрядки более, чем на 50% от номинальной мощности, и/или после продолжительного хранения свыше 30 дней.

Недолив воды: В свинцово-кислотных батареях глубокого цикла электролит расходуется в момент подзарядки. Когда уровень воды опускается ниже пластин, высока вероятность необратимых процессов, приводящих к поломке. Важно постоянно контролировать уровень воды и восполнять ее недостаток.

Перелив воды: Чрезмерное количество воды снижает концентрацию электролита, а вместе с ней и производительность аккумулятора. Если добавлять воду до подключения к ЗУ, тогда электролит может перелиться и батарее потребуется сервисное обслуживание.

Вверх ↑

Могу я уменьшить обслуживание аккумулятора реже доливая воду?

Сокращением частоты долива воды вы доведете аккумулятор до состояния стратификации, когда удельный вес электролита в верхней части окажется ниже удельного веса на дне. В результате понизится производительность и срок службы всей аккумуляторной батареи.

Вверх ↑

Как узнать о состоянии рабочих качеств батареи?

Чтобы понять – испытывает ли ваш аккумулятор проблемы с работоспособностью, нужно полностью его зарядить, после чего отключить ЗУ и исключить любые электрические нагрузки. Оставьте все батареи цепи на холостом ходу в течении часа. Сравните показатели напряжения в каждом аккумуляторе и, если расхождение превышает показатель в 0,15 вольт (для 6-вольтового) или 0,30 вольт (для 12-вольтового) – проблема обозначена. Наличие напряжения в одном аккумуляторе не скажет нам о проблеме. В таком случае применяют ареометр, измеряя удельный вес электролита. Если результаты измерения удельного веса расходятся более чем на 0,030 (30 пунктов), следует провести выравнивание зарядов.

Вверх ↑

Что можно использовать для очистки аккумуляторной батареи и нейтрализации электролита?

Решение вопроса – пищевая сода и вода. На каждый литр воды берется 1 фунт (около 454 грамм) пищевой соды.

Вверх ↑

сколько доливать, если его стало мало

Аккумуляторная батарея (АКБ) в автомобиле используется в качестве дополнительного источника электроэнергии. С помощью неё производится запуск двигателя, и при включённом зажигании осуществляется работа всех бортовых приборов. Зачастую многие водители совершают большую ошибку, когда думают, что можно долить электролит в аккумулятор при его понижении, ведь, возможно, причина кроется в обычном испарении воды.

Дистиллированная вода или электролит

Если самостоятельно изучить техническую литературу, то можно без особого труда понять, что во время работы аккумулятора из него испаряется некая часть жидкости, благодаря чему снижается уровень электролита над пластинами, а плотность кислоты в несколько раз увеличивается.

Поэтому можно сделать вывод, что недостаточный уровень электролита в батарее при её ежедневной эксплуатации оказывает значительное влияние на состояние пластин и скоропостижно снижает срок годности. Только при постоянной поддержке необходимого уровня кислоты уменьшается негативное действие повышенной плотности на аккумуляторную батарею.

Многие опытные механики знают о том, когда можно добавить электролит в аккумулятор, но чаще всего они заливают туда дистиллированную воду, ведь кислота не имеет свойства испаряться при кипении, поэтому из аккумулятора выходит наружу лишь кислород с водородом.

Важно помнить о том, что если в аккумуляторе мало электролита из-за его потери, например, разлился при открытых крышках, то именно в этом случае можно смело заливать его в горловины.

А также бывает, что проводя проверку плотности во всех отсеках аккумулятора, замечается её пониженное значение. Из этого можно с полной уверенностью сделать вывод о том, что произошла частичная сульфатация батареи. Когда количество электролита становится меньше за счёт кристаллизации серы на пластинах, то в этой ситуации аккумулятору просто необходимо срочное восстановление.

Подготовительные работы

Перед обслуживанием батареи следует изучить инструкцию, в которой полностью описано, как правильно доливать электролит в аккумулятор, а также важно прочитать инструкцию о зарядке.

Для того чтобы правильно долить электролит в аккумулятор, важно приготовить рабочее место, где будет проходить эта операция.

Также не стоит пренебрегать техникой безопасности:

  • Первое, что нужно сделать — это надеть на себя спецодежду, которая включает в себя комплект штанов, куртки, прорезиненых перчаток и защитные очки.
  • Поставить на верстак батарею и очистить её от различной грязи с помощью ветоши. Основное внимание нужно уделить плюсовому и минусовому контакту.
  • Проверить батарею мультиметром.
  • Аккуратно открыть крышки с помощью крестовой отвёртки.

Техническое обслуживание аккумулятора

После ряда этих манипуляций, обеспечивающих удобное обслуживание, специалисты проводят полную диагностику технического состояния аккумулятора. В основном они заключаются в шести пунктах:

  1. Перед тем как решить, что доливать в АКБ: электролит или воду, нужно обязательно полностью зарядить его специальным устройством.
  2. Далее произвести замер плотности во всех банках с помощью ареометра и зафиксировать все результаты в блокноте. При фиксировании показаний было бы удобнее проставить каждой банке свою цифру и напротив неё указать значение со шкалы.
  3. Если показания плотности у заряженного аккумулятора в некоторых банках различаются и не входят в рекомендуемую норму (1.25−1.29 г/куб. см), то это означает, что водителю нужно провести корректировку. Она заключается в следующем: при пониженном показании плотности нужно рассчитать, сколько доливать электролита в аккумулятор и залить его, а при повышенном залить дистиллированную воду.
  4. Плотность каждой банки в предельных значениях, а уровень электролита по какой-то причине опускается всё ниже. Лучшим решением для этой проблемы будет банальная доливка воды.
  5. Иногда бывает так, что плотность в секциях ниже номинального значения (меньше 1.21 г/куб. см). Чтобы найти решение, нужно забрать с помощью специальной клизмы небольшой раствор кислоты и слить его в мерный стакан. Дальше записать показания объёма и перелить электролит в стеклянную кружку. Пользуясь технической таблицей, залить в мерный стакан нужное количество раствора серной кислоты с повышенной плотностью и с помощью клизмы влить в ту банку, из которой забирался электролит. В тех ситуациях, когда есть значительная разница в сторону уменьшения плотности, лучше всего доливать кислоту с плотностью 1.40 г/куб. см. Необходимый уровень важно достичь дистиллированной водой.
  6. После того как во всех банках плотность стала одинаковой, необходимо подключить аккумулятор на небольшую подзарядку. Это делается для того, чтобы недавно залитый раствор тщательно перемешался внутри. После этого снова измерить плотность, и если её уровень изменился, то провести повторную операцию.

Каждому автолюбителю нужно знать, что перед тем как перейти на зимнюю эксплуатацию автомобиля, важно повышать значения плотности в АКБ, а при переходе на летнее время — понижать.

А также ежедневно перед каждым выездом нужно проверять не только уровень масла в двигателе, но и чистоту клем батареи и надёжность крепления пробок на её корпусе.

Замена электролита аккумулятора — стоит ли доливать электролит и как это сделать?

Свинцовые автомобильные аккумуляторы накапливают энергию до тех пор, пока идет химическая реакция между электролитом и токопроводящими пластинами. При изменении плотности электролита, этот процесс нарушается. Неважно, по какой причине испортился электролит, аккумулятор не работает. Требуется замена электролита, корректировка плотности или приобретение новой АКБ. В случае если электролит приобрел черный цвет, в нем взвесь угля и окалины – аккумулятор придется менять.

Полная замена электролита в аккумуляторе

Электролит представляет смесь серной кислоты с водой в определенной пропорции. О концентрации раствора узнают по плотности, измеряемой ареометром. Показатель основной, даже сотые доли влияют на способность электролита работать на накопление энергии.

Признаки негодного электролита:

  • Измерение плотности на заряженном аккумуляторе ареометром. Значение должно быть 1,25 -1,27 г/см3.
  • Мутный электролит – свидетельство того что внутри идут паразитные процессы сульфатирования.
  • Электролит перемерзал, но герметичность корпуса не нарушена.
  • Раствор черный или темно-коричневый со взвесью угля и окалины.

Замена электролита в аккумуляторной батарее будет эффективна, когда полости банок обследованы, промыты, удален сульфатный осадок. Если разрушены пластины, осыпалось активное вещество – аккумулятор не ремонтопригоден.

В домашних условиях полная замена электролита в аккумуляторе автомобиля происходит в последовательности:

  • Подготовить эмалированную или стеклянную посуду для слива электролита, средства личной защиты, место для работы, лучше, на открытом воздухе.
  • Аккумулятор извлечь, из автомобиля, снять пробки или просверлить отверстия в необслуживаемом АКБ, слить жидкость в подготовленную тару, пользуясь грушей или шприцом.
  • Аккумулятор промывается дистиллированной водой многократно, пока не удалится осадок. Возможно, придется удалять сульфат свинца, если есть осадок на пластинах. Нужно убедиться что активная замазка не осыпалась, угольная решетка цела.
  • Медленно, с перерывами залить электролит нужной плотности в каждую банку выше пластин на 5-7 мм. Подождать 2-3 часа для выхода пузырьков, замерить плотность электролита, довести до нормы
  • Зарядку аккумулятора после замены электролита вести малым током 0,1 А, не допуская закипания. После набора половины емкости, зарядка ведется циклично.
  • Произвести герметизацию банок.

Сколько времени заряжать аккумулятор? Заряжать аккумулятор после замены электролита нужно бережно, как после глубокой разрядки. Операция замены электролита своими руками в автомобильном аккумуляторе считается законченной, если он полностью принимает ток длительное время. Зарядка ведется осторожно, кипение в банках недопустимо.

Предлагаем посмотреть видео по правильной замене электролита в автомобильном аккумуляторе.

Почему нельзя доливать электролит в аккумулятор

Вы замерили уровень в банках аккумулятора, он ниже нормы? Это значит, что часть воды испарилась. Если это обслуживаемый аккумулятор, нужно замерить уровень в каждой банке и долить электролит до нормы водой. В необслуживаемом АКБ сквозь стенки видно зеркало залива.

Упал уровень, значит в растворе мало воды и высокая плотность. Добавленный электролит повысит уровень, но плотность раствора останется высокой. Это пагубно для пластин АКБ, сокращается срок службы батареи. Поэтому следует электролит доводить до уровня, доливая дистиллированную воду.

Посмотрите видео о правилах замены электролита.

В каких случаях доливать электролит в аккумулятор?

Электролит в аккумулятор доливают, когда снижается емкость. При этом замеры ареометром содержимого каждой банки показывают снижение плотности. Возможно, в АКБ произошла сульфатация, связанный кислотный остаток в PbSO4 не участвует в реакции.

Если электролит, извлеченный из банок прозрачный, светлый, его можно использовать вторично, добавив корректирующий раствор, плотностью 1,4 г/см3. После снятия осадка на пластинах, батарея заливается прежним электролитом, но он низкой концентрации. Можно ли довести раствор до нужной плотности, доливая электролит? Какой состав взять, и сколько нужно долить в аккумулятор корректирующего раствора?

По технологии нужно заменить порцию слабого состава крепким. Долить и изъять электролит из банок раствор можно, воспользовавшись грушей и мерным цилиндром. Как поменять растворы, в какой пропорции видно из таблицы.

При этом следует использовать только электролит для корректировки. После операции замены, в течение получаса ведется подзарядка, чтобы жидкости смешались. Через два часа после отключения ЗУ проверяется плотность, если нужно, корректировка повторяется.

Предлагаем ознакомиться на видео, как долить электролит в аккумулятор.

Что доливать в аккумулятор, воду или электролит

При соблюдении условий эксплуатации, необслуживаемые аккумуляторы не требуют контроля плотности и уровня электролита. Обслуживаемые АКБ имеют специальные пробки – доступ к каждой банке. В них регулярно проверяются показатель качества и уровня электролита. Запас энергии батареи определяется по самому слабому элементу. Поэтому необходимо поддерживать плотность электролита во всех банках равной.

Плотность в банке может снизиться, если началась сульфатация. Тогда добавка электролита не поможет. Сильное сопротивление забитых пластин не пропускает заряд, добавленная кислота увеличит отложения. В этом случае заряд восстановит сульфатирование. Вот почему нельзя в  АКБ с налетом сульфата свинца доливать электролит.

Доливать ли воду в аккумулятор? Если уровень электролита в банках низок, это указывает на интенсивное кипение батареи во время работы. Испаряется в основном водород. С оголенных пластин может осыпаться активная замазка, произойдет сульфатирование, коррозия. Поэтому подлить дистиллированную воду необходимо, но после этого аккумулятор нужно ставить на зарядку по полному циклу.

В период восстановления емкости частично разрушаются кристаллы свинца, происходит разбавление плотного раствора, происходит восстановление активности электролита. Доливают электролит или воду в АКБ в отверстия, прикрытые пробками, малой струей через воронку. Зарядку начинают не сразу, чтобы вышел воздух, смешались составы.

Контроль плотности следует произвести через полчаса после отключения ЗУ. При отклонениях плотности выполнить корректировку.

Когда доливать в электролит, а когда воду

Вопрос, чем долить, если мало электролита в банках аккумулятора требует особого освещения. Такие жидкости, как электролит или дистиллированная вода, нужно заливать в аккумулятор правильно. Корпус и воронка должны быть чистыми, заливаемая жидкость прозрачная, без взвеси. Долить электролит водой можно, используя медицинский шприц без иглы, если корректировка требуется незначительная.

В каких случаях можно доливать воду в электролит аккумулятора? Если в одной или нескольких банках уровень электролита в АКБ низкий. Это происходит из-за кипения банок в условиях повышенной температуры или глубокого разряда. Добавлением дистиллированной воды восполняются потери объема, уменьшается плотность электролита, предотвращается скорый износ батареи.

Нужно ли заряжать аккумулятор после добавления воды, или замены электролита? Любое изменение внутреннего баланса требует выравнивания и стабилизации. После изменения концентрации жидкости необходимо провести полный цикл зарядки, убедиться, что аккумулятор не потерял емкость, стабильно напряжение на клеммах, обеспечивает пусковой ток.

Можно ли долить электролит в аккумулятор, если случайно его выплеснули? Как это случилось? Возможно, перевернули прибор. Это один из немногих случаев, когда вытекший электролит заменяют точно таким же и даже температуру подгоняют. Но все равно потребуется подзарядка и проверка плотности.

Посмотрите видео, как правильно долить электролит в аккумулятор. Вода или электролит, что доливать?

Как долить электролит в необслуживаемый аккумулятор

Все намного сложнее, если потребовалось долить воду в электролит необслуживаемого аккумулятора автомобиля. Сквозь полупрозрачные стенки можно увидеть, сколько электролита в банках. Но как проникнуть в корпус необслуживаемого аккумулятора?

Есть модели, проникнуть внутрь в которых можно отрезав болгаркой верхнюю крышку. Но такие действия нужны, если нужно удалить накипь и промыть осевший внизу шлам. Для того чтобы долить жидкость до нужного уровня сверлят отверстие в корпусе. Позже его заклеивают эпоксидным клеем.

Полностью необслуживаемый аккумулятор требует бережного обращения, боится глубоких разрядов и нестабильной работы бортовой АКБ. Заявленные 5-7 лет он выдерживает только в идеальных условиях.

Как разобрать необслуживаемый аккумулятор чтобы долить электролит

В современных АКБ, таких как VARTA, под декоративной наклейкой можно увидеть 6 пластинок, плотно утопленных в корпус. Если подковырнуть кружок шилом, можно под ним обнаружить пробку резиновую. Тогда появится возможность отобрать пробу электролита, провести замер плотности, откорректировать состав. Если нет пробки – в каждой банке колется отверстие тонким шилом, а вода запускается из шприца, каплями.

Но если обнаружено, что в банках на пластинах белесые полосы – это сульфатация. Чтобы очистить полости, убрать осадок внизу, потребуется вскрыть крышку распиливанием.

Посмотрите видео, как долить электролит в необслуживаемый аккумулятор.

Долить электролит в гелевый аккумулятор

Необслуживаемый гелевый аккумулятор представляет тот же свинцовый аккумулятор, но электролит загустили, он находится в виде геля. С годами вследствие электрохимических паразитных реакций получается водород, выходящий из резинового вентиляционного клапана. Гель обезвоживается и уже неплотно прилегает к пластинам. Емкость АКБ уменьшается.

Долить воду в банки аккумулятора просто. Нужно снять наклейку на корпусе, снять колпачки-клапаны и закапать в каждую банку по 1,2 мл воды. Вода должна впитаться в желеобразную массу. Нужно время. Через полчаса, если вода выше поверхности пластин батареи – извлеките ее фильтром или шприцом.

Часто задаваемые вопросы

Какой минимально допустимый уровень электролита? Что делать если уровень электролита слишком низкий?


•    Уровень электролита над верхним краем пластин должен быть в пределах от 18 до 45 мм (в зависимости от модели АКБ). Минимально допустимый уровень электролита 10мм. Важно помнить, что при понижении уровня электролита в процессе эксплуатации, в батарею следует доливать исключительно дистиллированную воду, а не электролит.

Какова должна быть плотность электролита?


•    Плотность электролита должна быть в пределах (1,27÷1,30) г/см3 при 25˚С. При плотности электролита ниже 1,26 г/см3 при 25˚С, АКБ необходимо зарядить.

У меня на аккумуляторе маркировка вида 6X71D09UC, что она обозначает? Как определить дату производства АКБ?


•    Маркировка вида 6X71D09UC наносится для производственной логистики и не несет информации для владельца аккумулятора. Дата изготовления нанесена на верхнюю часть крышки, состоит из 6 цифр и одной буквы, расшифровывается следующим образом: первые две цифры это месяц, вторая группа цифр это год и третья это день изготовления, буква — шифр смены. Например, маркировка 01 15 02 Т будет читаться как 02 января 2015г. Места нанесения маркировки можно найти у нас на сайте: Маркировка аккумуляторов АКОМ

У вас на сайте написано, что гарантия на аккумулятор 3 года, а продавец поставил гарантию 1 год? Правильно ли он поступил?


•    Гарантийный срок на АКБ производства ЗАО «АКОМ» составляет от 12 до 48 месяцев при пробеге не более 50 000км – 100 000км (в зависимости от модели батареи), данная информация указана как на этикетках самой батареи, так и в инструкции по эксплуатации.


Обращаем Ваше внимание на то, что гарантийный срок всех АКБ производства ЗАО «АКОМ» начинается от даты изготовления. Также обратите внимание на пункт 6.2 инструкции по эксплуатации, где указаны случаи, при которых претензии не удовлетворяются.


В Вашем случае продавец поступил неправильно. В соответствии со ст.5 Закона РФ «О защите прав потребителей» гарантийный срок – период, в течение которого в случае обнаружения в товаре недостатка изготовитель (исполнитель, продавец, уполномоченная организация или уполномоченный индивидуальный предприниматель, импортер) обязаны удовлетворить требования потребителя, установленные статьями 18 и 29 Закона «О защите прав потребителей». В связи с этим продавец не имел права снижать срок гарантии, предоставляемый производителем.


Гарантийные обязательства выполняются в любом регионе РФ, при обращении к официальному представителю. При наличии производственного дефекта в приобретенной Вами батарее, гарантийные обязательства будут исполнены в полном объеме.

У меня вопрос по зарядке аккумулятора


•    Инструкция по заряду АКБ находится на нашем сайте: зарядка аккумулятора

Машина всю ночь простояла на морозе, с утра не завелась. Снял аккумулятор и обнаружил, что электролит замерз. Почему это случилось? Что теперь делать с АКБ?


•    Если электролит замёрз во всех банках одновременно, батарею необходимо поместить в помещение с температурой 25˚С не менее чем на 24 часа, после чего произвести заряд по инструкции. Данный случай не является гарантийным, т.к. замерзание электролита говорит о понижении его плотности – разряд АКБ не является дефектом завода изготовителя.


•    Если электролит замерз в одной из банок АКБ, необходимо также отогреть батарею в течение суток, далее провести контрольный заряд. Если под нагрузкой замерзшая банка начинает кипеть, то вероятнее всего в ней присутствует дефект в виде короткого замыкания. В этом случае батарея подлежит замене по гарантии.

Я купил новый автомобиль, в нем стоит ваш аккумулятор. К кому мне обращаться в случае возникновения проблем с ним?


•    В виду того, что аккумуляторная батарея была приобретена в составе автомобиля, все гарантийные обязательства перед Вами несет производитель в лице своего дилера, у которого был приобретен автомобиль.


Рекомендуем Вам ознакомиться с условиями предоставления гарантии на АКБ в сервисной книге. Если Ваш автомобиль находится в гарантийном периоде — обратитесь к дилеру для проведения диагностики АКБ и автомобиля.

Дистиллированную воду или электролит: что доливать в аккумулятор

Правильный уровень электролитической жидкости во много определяет срок службы аккумулятора. Но следить нужно и за уровнем, и за плотностью раствора серной кислоты. В статье мы ответим на вопрос, что заливать,  как отличить дистиллированную воду от обычной, чтобы своими действиями не сократить ресурс АКБ.

Почему АКБ нуждается в обслуживании?

Электролит — смесь серной кислоты и дистиллированной воды, которая вступает в химическую реакцию с активной массой отрицательных и положительных пластин. При разряде свинцово-кислотного аккумулятора из электролитической жидкости расходуется серная кислота и вода, в результате чего снижается плотность электролита. При обратном процессе, когда аккумулятор заряжается, количество свинца на электродах может снизиться настолько, что внутри батареи начинает преобладать процесс электролиза воды. Описанное выше «кипение» возникает при перезаряде аккумулятора, а результатом выделения газообразного водорода и кислорода становится повышение плотности электролита.

Перезаряд опасен не только выкипанием воды, но и взрывом образующихся внутри корпуса аккумулятора газов. Поэтому нужно следить за исправностью системы зарядки автомобиля. В случае заряда от внешнего устройства следует приоткрутить сервисные пробки и правильно выставлять ток зарядки.

Подготовленный материал главным образом относится к малосурмянистым свинцово-кислотным аккумуляторам (Sb/Sb). АКБ такого типа из-за невысокой стоимости получили наибольшее распространение, но владельцам стоит помнить о недостатках: высокий саморазряд и снижение плотности вследствие вскипания воды. Некоторые кальциевые аккумуляторные батареи (Ca/Ca) также нуждаются в плановом обслуживании, что обязательно указывает производитель в инструкции по эксплуатации.

В каких случаях следует долить электролит?

  1. Линейный перезаряд. Причина в неисправной системе зарядки автомобиля, вследствие чего происходит вскипание электролитической жидкости. Проверить систему зарядки можно мультиметром. Уровень заряда на холостом ходу и при перегазовках не должен превышать 14,8 В. Если вы заметили на корпусе потеки и окисление на металлических поверхностях вблизи батареи, после устранения причины неисправности обязательно проверьте уровень и плотность электролитической жидкости. Продолжительная эксплуатация АКБ при перезаряде опасна оголением пластин, вследствие чего они нагреваются и теряют активную массу, происходит реакция сульфатации. На внутренней части пробок при этом можно увидеть темный налет. Лучше не пытаться оживить батарею доливкой электролита, а заменить аккумулятор.
  2. Течь электролита из одной из банок вследствие повреждения корпуса. Трещины, сколы чаще всего возникают из-за механических повреждений или замерзания воды внутри корпуса в сильный мороз. Если степень повреждений незначительная, корпус можно отремонтировать. В таком случае следует правильно определить соотношение электролита и дистиллированной воды в аккумуляторе. Если аккумулятор был поврежден до использования, надо залить электролит с такой же плотностью, которая осталась в поврежденной банке. Если АКБ использовался в поврежденном состоянии, долейте и электролит, и воду, сравняв плотность поврежденной и соседней секций.
  3. Потеря электролита вследствие переворота или опрокидывания батареи.
  4. Ввод в эксплуатацию сухозаряженных аккумуляторов. Данная технология производства сохранила свою актуальность только для мотоциклов. Все автомобильные аккумуляторные батареи поставляются в готовом к использованию состоянии.

Измеряем плотность и уровень электролита

Чтобы понять, вашему аккумулятору нужна вода или электролит, важно правильно определить уровень жидкости и плотность внутри каждой банки. Уровень электролита не должен опускаться ниже верхней границы пластин. Для его визуальной проверки достаточно открутить сервисные пробки.

Шаг второй – измерение плотности. На полностью заряженном аккумуляторе плотность электролитической жидкости с температурой +20 °С должна составлять 1,27-1,29. Измерения проводятся специальным прибором – ареометром. Плотность зависит от температуры электролитической жидкости, поэтому при самостоятельной проверке в условиях, разнящихся с эталонными, следует пользоваться корректирующей таблицей. Суть диагностики в том, чтобы набрать небольшое количество электролита из каждой банки, после чего оценить плотность по шкале на поплавке.

При продолжительном простое в разряженном состоянии аккумулятор следует заряжать малым током (5-7% от емкости). Большой ток зарядки приведет к реакции сульфатации. Даже при полной зарядке АКБ больше не будет соответствовать своим пусковым и емкостным характеристикам.

При сульфатации даже в заряженном состоянии плотность может не подняться выше 1,20. Такие изменения часто вводят автовладельцев в заблуждение, заставляя доливать корректирующий электролит, что неправильно. Сначала нужно провести детацию пластин. Определить можно по белому налету на пластинах.

Если реакция детации отсутствует, то показатель ниже 1,27 говорит о необходимости заливки корректирующего электролита. И наоборот, если плотность выше, следует долить в аккумулятор воды.

Выбор дистиллята

Если заправить аккумулятор обычной водой (в том числе и собранной дождевой), активная масса пластин очень быстро придет в негодность. Чтобы продлить срок эксплуатации аккумулятора, используйте только качественную дистиллированную воду. Для проверки качества учитывайте простейшие характеристики дистиллята:

  • электропроводность. Дистиллированная вода, в отличие от обычной, не проводит электрический ток. Проверить воду можно путем измерения сопротивления с помощью мультиметра – у дистиллята оно будет равно бесконечности;
  • отсутствие следов после вскипания. Для теста капните воду на чистый лист А4 либо нагрейте ее на стеклянной поверхности/кусочке фольги. После испарения дистиллята на поверхности не должно остаться ореолов и пятен.
Видео:КАК ДОЛИВАТЬ ЭЛЕКТРОЛИТ ИЛИ ВОДУ В АККУМУЛЯТОР | ЧТО ДЕЛАТЬ НЕЛЬЗЯ

Соотношение электролита к воде

Чтобы получить 1 литр электролитической жидкости плотностью 1,27-1,28, следует смешать 0,772 л корректирующего электролита и 0,295 л дистиллированной воды. При нормальной эксплуатации испаряется только вода, поэтому доливать электролит вместо дистиллята нельзя. Чтобы не ошибиться с плотностью, обслуживание проводят только после полной зарядки аккумулятора.

Перелив воды, при котором плотность опускается на уровень 1,26, считается некритичным. При снижении этой границы уже необходимо откачать часть жидкости, довести плотность до заводской, долив корректирующий электролит.

Меры предосторожности

Все действия с раствором серной кислоты и воды проводят в плотных резиновых перчатках. Не допускайте попадания электролита на оголенные участки кожи и слизистые оболочки. Помните о том, что раствор крайне агрессивен и к лакокрасочному покрытию автомобиля. При попадании на ЛКП обязательно промойте участки очистителем и большим количеством воды.

Условия эксплуатации автоаккумуляторов

1. Указание мер безопасности.

1.1. Заряд батареи производите в помещении, оборудованном приточно-вытяжной вентиляцией.

1.2. Во время заряда и обслуживания аккумуляторных батарей запрещается курить и пользоваться открытым пламенем.

1.3. Для приготовления электролита применяйте стойкую к действию серной кислоты посуду (керамическую, эбонитовую, освинцованную), в которую заливайте сначала воду, а затем при непрерывном помешивании серную кислоту. Вливать воду в концентрированную серную кислоту запрещается во избежание несчастного случая.

1.4. При приготовлении электролита и заливке батарей надевайте очки, резиновые перчатки, резиновые сапоги, фартук или костюм из кислотостойкого материала.

1.5. При случайном попадании брызг серной кислоты на кожу немедленно, до оказания медицинской помощи, осторожно снимите кислоту ватой, промойте пораженные места обильной струей воды и затем 5% раствором кальцинированной соды или аммиака.

1.6. При работе с металлическим инструментом не допускайте коротких замыканий одновременным прикосновением к разнополярным выводам аккумулятора.

2. Приведение в рабочее состояние сухозаряженных аккумуляторов.

2.1. Снять блок пробок.

2.2. Залить батарею электролитом.

2.3. Залить каждый элемент до требуемого уровня электролитом (метки уровня указаны на тыльной стороне АКБ), имеющим плотность при температуре 25 С: (1,28+-0,01) г/см3 для батарей «нормального исполнения», (1,23+-0,01) г/см3 для батарей «тропического исполнения».

2.4. Электролит для заливки батарей готовьте из серной кислоты (ГОСТ667-73 сорт высший или первый) и дистиллированной воды (ГОСТ 6709-72). Плотность электролита измеряйте ареометром аккумуляторным ГОСТ 18481-81.

2.5. Температура электролита должна быть не выше 30 С. Не рекомендуется заливать батареи электролитом ниже 15 С.

Примечание: при повышении температуры на 1 С, плотность электролита уменьшается на 0,0007 г/куб.см, а при понижении температуры плотность увеличивается. Исходной считается температура 25 С.

Операции приведения в рабочее состояние должны производиться при температуре 25 +/- 10 С.

После заливки электролита через 20 минут проверить напряжение батареи без нагрузки. Если напряжение не менее 12.5 вольт, АКБ готова к работе. Если напряжение менее 12.5 вольт, но более 10.5 вольт АКБ необходимо подзарядить до напряжения, указанного изготовителем. При напряжении менее 10,5 вольт аккумулятор бракуется.

3. Заряд батареи.

3.1. Присоединить батарею к источнику постоянного тока, соединяя положительный полюсной вывод с положительным зажимом источника и аналогично, отрицательный полюсной вывод с отрицательным зажимом источника тока.

3.2. Заряжать током равным 10 % номинальной емкости батареи (5,5 А для 6СТ55, 6,6 А для 6СТ66 и т.д.).

3.3. Время зарядки ориентировочно до начала газовыделения. Плотность электролита после зарядки должна быть 1.27+/-0,01 г/куб.см, напряжение на клеммах не ниже 12,6 вольт.

4. Приведение в рабочее состояние залитых батарей.

Измерить плотность и напряжение, которые должны быть не ниже 1,27 г/куб. см и 12,6 вольт соответственно.

Если напряжение и плотность не соответствуют указанным в п. 3.3., АКБ необходимо зарядить до плотности 1.27 г/куб.см.

4.1. Снять блок пробок.

4.2. Заряд АКБ производить согласно пункту 2.5.

5. Техническое обслуживание.

Не реже одного раза в две недели:

5.1. Проверяйте надежность крепления батареи в гнезде и плотность контакта наконечников проводов с выводами батареи, при необходимости снимите оксидную пленку с выводов.

5.2. Чистите батарею от пыли и грязи. Попавший на поверхность батареи электролит вытирайте ветошью, смоченной в растворе аммиака или кальцинированной соды (10%). Прочистите вентиляционные отверстия.

5.3. При падении уровня электролита ниже отметки min на корпусе батареи доводите его до нормы дистиллированной водой непосредственно перед запуском двигателя для быстрого перемешивания с электролитом.

5.4. В зимнее время, особенно при температуре воздуха ниже -30 С, а также в случаях ненадежного запуска двигателя, периодически проверяйте плотность электролита. Не оставляйте на морозе частично разряженную батарею. При эксплуатации батареи при температуре ниже 30 С, плотность электролита в ней должна быть 1.30 г/куб.см.

5.5. Периодически следите за тем, как происходит зарядка батареи во время работы двигателя автомобиля.

Примечание: Неисправности в реле-регуляторе двигателя автомобиля влияют на качество и работоспособность батареи. Если напряжение генератора будет чрезмерно, высоким может произойти перезаряд батареи. Признаками этого являются: преждевременное разрушение аккумуляторных пластин (электродов) и, как следствие, быстрое уменьшение фактической емкости батареи и сокращение срока ее службы. При перезарядке резко снижается уровень электролита. Недостаточное напряжение генератора, особенно при эксплуатации при низких температурах, может привести к недозарядке батареи и ухудшению ее стартерных свойств. Напряжение, поступающее от генератора двигателя на аккумуляторную батарею должно быть 13,8-14,4 В.

5.6. Доливать электролит в батарею разрешается только в случае, если произошло его выплескивание из АКБ.

5.7. Пуск стартера производить короткими включениями, но не более чем на 15 секунд. Езда при помощи стартера не допускается.

5.8. При перерывах в эксплуатации батареи свыше одного месяца производить подзарядку АКБ.

5.9. Батареи, временно снятые с машин хранить только в заряженном состоянии. Благоприятная температура хранения — от 0 С до — 10 С, но не ниже — 30 С.

5.10. Если батарея находится в периоде «бездействия» при положительных температурах необходимо заряжать ее раз в месяц, при отрицательных, только в случае, если падение плотности электролита более чем на 0,04 г/куб.см. В таком состоянии батареи могут находиться при положительных температурах не более 9 месяцев.

аккумуляторов | Бесплатный полнотекстовый | Концентрация присадки к электролиту для максимального накопления энергии в свинцово-кислотных аккумуляторах

1. Введение

Добавление химической добавки к электролиту свинцово-кислотной батареи может изменить удельную энергию, которую батарея может хранить. Этот факт известен с момента изобретения батареи и в настоящее время является предметом исследований, представляющим большой интерес для индустрии батарей. В этой статье представлен общий метод оценки влияния добавок электролита на энергоемкость свинцово-кислотной батареи и определения наилучшей концентрации добавки для использования.Рассматриваемая добавка к электролиту является довольно общей. Это может быть химическое соединение или смесь химикатов; суспензия или гель, используемый для иммобилизации электролита. Единственное ограничение заключается в том, что добавка — какой бы она ни была — должна находиться в химическом равновесии и иметь низкую реакционную способность по отношению к другим компонентам батареи.

Добавки также добавляются в электролит батареи по множеству других причин, таких как продление срока службы батареи, уменьшение коррозии электродов, улучшение проводимости, уменьшение выделения газа на электродах, защита от перезарядки или глубокой разрядки и т. Д.Добавки, которые полезны в некоторых отношениях, могут быть вредными в других. Таким образом, выбор и концентрация добавки всегда должны оцениваться с учетом побочных эффектов, которые она вызывает. Это, в частности, означает, что добавка, повышающая энергоемкость батареи, может оказаться нежизнеспособной, по крайней мере, при определенных концентрациях из-за других нежелательных эффектов, которые она производит.

Существуют сотни статей, книг и патентов, посвященных добавкам электролита и их влиянию на свинцово-кислотные батареи.Полный обзор литературы выходит за рамки настоящей статьи. Глава 3 книги Павлова [1] содержит сравнительно краткий обзор основной литературы по этой теме примерно до 2011 года. Это касается классических неорганических добавок (фосфорная кислота, борная кислота, лимонная кислота, сульфат стронция, сульфат натрия), углеродных суспензий, и эмульсии органических полимеров. В настоящее время большой потенциал ионных жидкостей как добавок к электролитам активно изучается [2] из-за способности этих солей расширять электрохимическое окно воды [3,4,5].Кроме того, большой практический интерес представляет изучение добавок, которые производят гелеобразные электролиты, в связи с их применением в области электрического передвижения [6,7,8]. Интересное исследование добавления добавки к гелеобразному электролиту было недавно представлено в [9].

Разнообразие доступных добавок делает невозможным выработку общих правил о наилучшей добавке и наилучшей концентрации для использования для данной цели. Следовательно, настоящая статья по необходимости должна быть достаточно ограниченной по объему.По этой причине, игнорируя другие эффекты, в данной статье основное внимание уделяется влиянию добавок на емкость аккумуляторов энергии. Представленный анализ дает общий способ оценить влияние любой добавки электролита на эту емкость. Это также показывает, как концентрация добавки, которая максимизирует эту емкость, может быть определена на основе небольших экспериментальных данных. Конечно, положительная оценка добавки в отношении энергоемкости батареи не исключает необходимости выяснять, вызывает ли добавка нежелательные побочные эффекты и в какой степени.Однако в поисках лучших добавок для увеличения емкости аккумуляторов энергии результаты настоящей статьи могут помочь быстро отказаться от неэффективных добавок, что значительно упростит процесс выбора.

Центральное место в анализе этой статьи занимает наблюдение, что при любой конечной температуре внутренняя энергия любой системы конечного объема должна быть конечной. Это следствие принципа сохранения энергии или первого закона термодинамики. При довольно широких предположениях, которым соответствует большинство природных систем и, в частности, растворы электролитов, это наблюдение вместе со вторым законом термодинамики подразумевает ограничение удельной свободной энергии, которую электролит может накапливать и изотермически подавать.Этот момент обсуждается в разделе 3. Подобный анализ ранее применялся в [10] для определения максимальной энергетической емкости живой клетки — проблема, которая концептуально аналогична рассмотренной здесь. Настоящий подход приводит к определению предельная кривая батареи (Раздел 4). Эта кривая определяет предельную концентрацию компонентов электролита, при превышении которой батарея претерпевает необратимые изменения или повреждения, которые могут сократить срок службы батареи. В случае свинцово-кислотной батареи это повреждение проявляется в выделении O 2 на положительном электроде при избыточном заряде или в необратимом сульфировании отрицательного электрода при избыточном разряде.Указанная предельная кривая помогает не только определить значение максимального увеличения энергоемкости аккумулятора, которое может быть достигнуто при использовании данной добавки к электролиту, но также и определить значение концентрации добавки, которая обеспечивает это максимальное увеличение. . Это также приводит к установлению теоретических пределов заряда, в которых батарея может работать без необратимых изменений. Практический пример применения полученных результатов приведен в разделе 5.

2. Свободная энергия аккумуляторных электролитов с добавками

Свободная энергия раствора или смеси — это сумма свободных энергий его компонентов. Таким образом, если nh3O, nh3SO4 и n j (j = 1, 2,…, k) обозначают моль воды, моль серной кислоты и моль добавок, соответственно, свободная энергия Гиббса Pb -кислый электролит аккумуляторной батареи при давлении p и абсолютной температуре T определяется как:

G = G (nh3O, nh3SO4, n1, n2, …, nk, p, T) = nh3O μh3O + nh3SO4 μh3SO4 + ∑j = 1k nj μj + C

(1)

Здесь μh3O, μh3SO4 и μ j — парциальные молярные свободные энергии Гиббса или химические потенциалы воды, серной кислоты и добавок соответственно, а C — произвольная константа.Химический потенциал любого компонента раствора или смеси всегда можно выразить в виде:

μ = μo (po, T) + V¯ Δp + R T lna

(2)

В этом уравнении μ o — химический потенциал рассматриваемого компонента в стандартном состоянии при давлении p o и температуре T, а V¯ — парциальный молярный объем того же компонента, R — универсальная газовая постоянная , Δp — p — p o и, наконец, a — активность или эффективная концентрация рассматриваемого компонента.

В дальнейшем мольное соотношение:

xh3O = nh3Onh3O + nh3SO4 + ∑j = 1k nj

(3)

принимается как мера концентрации растворителя, тогда как концентрации серной кислоты и добавок измеряются в молях (моль на кг H 2 O) и обозначаются bh3SO4 и b j соответственно. Это:

bh3SO4 = nh3SO4mh3O = nh3SO4n h3O Mh3O

(4)

а также:

bj = njmh3O = njn h3O Mh3O

(5)

где M H 2 O = 18.015 × 10 −3 кг · моль −1 — молярная масса воды. В этих обозначениях активности компонентов электролита можно выразить как:

ah3O = γh3O xh3O = γh3O nh3Onh3O + nh3SO4 + ∑j = 1k nj

(6)

ah3SO4 = γh3SO4 bh3SO4 = γh3SO4 nh3SO4mh3O = γh3SO4 nh3SO4n h3O Mh3O

(7)

а также:

aj = γj bj = γj njmh3O = γj njn h3O Mh3O

(8)

где γh3O, γh3SO4 и γ j — соответствующие коэффициенты активности, которые, как правило, зависят от nh3O, nh3SO4 и n j , кроме T и p.Выражая μh3O, μh3SO4 и μ j в уравнении (2) и используя уравнения (6) — (8), мы можем записать уравнение (1) как:

G = nh3O μh3Oo (po, T) + nh3SO4 μh3SO4o (po, T) + ∑j = 1s nj μjo (po, T) + VΔp + R T [nh3Oln γh3O nh3Onh3O + nh3SO4 + j γ = 1k nj3SO4 + nh3SO4 Mh3O + ∑j = 1k njlnγj nj n h3O Mh3O] + C

(9)

При написании этого уравнения мы использовали следующее уравнение:

V = nh3O V¯h3O + nh3SO4 V¯h3SO4 + ∑j = 1k nj V¯j

(10)

которая связывает парциальные молярные объемы V¯h3O, V¯h3SO4 и V¯j компонентов электролита с объемом электролита, V.Свободная энергия Гельмгольца Ψ и свободная энергия Гиббса связаны друг с другом известным уравнением:
Отсюда и из уравнения (9) получается свободная энергия Гельмгольца электролита:

Ψ = nh3O μh3Oo (po, T) + nh3SO4 μh3SO4o (po, T) + ∑j = 1s nj μjo (po, T) — poV + R T [nh3Oln γh3O nh3Onh3O + nh3SO4 + j γ = 1k nj3On + nh3SO4 Mh3O + ∑j = 1k njlnγj nj n h3O Mh3O] + C

(12)

Приведенные выше формулы являются стандартными. Однако, как видно из уравнения (7), введенный выше коэффициент активности γh3SO4 относится к общей концентрации серной кислоты.Этот коэффициент следует отличать от среднего коэффициента активности ионов серной кислоты, который может быть обозначен как γh3SO4 ± и обычно рассматривается в электрохимии (хотя и реже при работе с свинцово-кислотными батареями). Использование γh3SO4 вместо γh3SO4 ± упрощает следующие формулы, поскольку детали диссоциации серной кислоты на ионы не играют какой-либо явной роли в данном подходе. Связь между двумя коэффициентами активности:

γh3SO4 = 4 (bh3SO4) 2 · (γh3SO4 ±) 3

(13)

Это можно получить из уравнения (7), если ah3SO4 выразить как функцию от γh3SO4 ± в соответствии со стандартными формулами для ионных растворенных веществ (см.g., раздел 7.4 в [11],). И γh3SO4, и γh3SO4 ± зависят от bh3SO4, и их лучше всего определить из эксперимента. Важное упрощение уравнения (12) достигается введением следующего уравнения:

∑j = 1k nj lnγj njn h3O M h3O = nadd lnγadd naddn h3O M h3O

(14)

доказательство которого в несколько измененном виде дано в [10]. В этом уравнении мы устанавливаем:

nadd = ∑j = 1k nj

(15)

а также:

γadd = M h3Onadd [∏j = 1k (γj njMh3O) nj] 1neq

(16)

где символ Π обозначает произведение последовательности, т.е.е.,:

∏i = 1kyi = y1⋅y2⋅ … ⋅yk

(17)

Переписав правую часть уравнения (12) в виде суммы двух частей и используя уравнение (14), свободную энергию Гельмгольца электролита можно в общем виде выразить как:

Ψ = Ψ ′ + Ψ ″

(18)

где функции Ψ ′ и Ψ ″ задаются формулами:

Ψ ′ = Ψ ′ (nh3O, nh3SO4, n1, n2, …, nk, po, T) = nh3O μh3Oo (po, T) + nh3SO4 μh3SO4o (po, T) + ∑j = 1s nj μjo (po, Т) + С

(19)

а также:

Ψ ″ = Ψ ″ (nh3O, nh3SO4, nadd, p, T) = R T [nh3Oln γh3O nh3O nh3O + nh3SO4 + nadd + nh3SO4ln γh3SO4 nh3SO4n h3O Mh3O + naddlnγ5 naddlnγ5]

(20)

соответственно.Как обсуждается в следующем разделе, ″ — это часть, которая определяет допустимый диапазон электролита. Таким образом, что касается определения этого диапазона, уравнение (20) позволяет нам заменить все добавки к электролиту только одной фиктивной добавкой в ​​количестве n добавить и коэффициент активности γ добавить . Такую добавку будем называть эквивалентной добавкой. Уравнение (20) носит довольно общий характер. Это применимо к любой комбинации добавок, будь то жидкости, твердые суспензии, коллоиды или любые их смеси.Независимо от количества и вида добавок, значения n добавить и γ добавить могут быть определены экспериментально, используя тот факт, что, как обсуждается в следующем разделе, существует ограничение на максимальное количество свободной энергии, которое любая конечная система может храниться в изотермических условиях. Подробности соответствующей экспериментальной процедуры приведены в разделе 5.

3. Предел свободной энергии раствора электролита

При любой заданной конечной температуре количество нетепловой энергии, которую конечная система может хранить или поставлять, является конечным.Это непосредственное следствие первого закона термодинамики. Это подразумевает ограничение максимальной энергии, которую может хранить система. Если рассматривать в свете второго закона термодинамики, предел максимальной энергии влечет за собой ограничение на состояния, которых система может достичь, не подвергаясь необратимым изменениям в ее основных свойствах. При довольно общих предположениях такое ограничение определяет область всех состояний, которых может достичь система, не претерпевая необратимых изменений своих свойств.Эта область является (термодинамически) допустимым диапазоном системы. Его границы — это предельная поверхность системы. Частный случай решений, о котором идет речь в данной статье, подробно обсуждается в [10]. Систематическое введение по этому вопросу, включая общие системы, дается в [12].

Из классической термодинамики мы знаем, что при постоянной температуре количество нетепловой энергии, которую система может хранить или отдавать, равно изменению свободной энергии Гельмгольца системы.Однако не вся свободная энергия системы подвержена термодинамическим ограничениям. Например, любая чисто механическая часть свободной энергии системы, например, потенциальная энергия, обусловленная весом системы, не ограничивается термодинамикой. Следовательно, при поиске допустимого диапазона системы следует пренебречь той частью свободной энергии системы, которая не ограничена термодинамикой.

В данном случае часть свободной энергии электролита, не ограниченная термодинамикой, равна Ψ ′.Это очевидно из уравнения (19), поскольку Ψ ‘равно сумме свободных энергий компонентов электролита в их стандартном состоянии. Таким образом, Ψ ‘зависит от количества этих компонентов (nh3O, nh3SO4, n1, n2, …, nk) независимо от того, находятся ли они в растворе или отделены друг от друга. Поскольку нет термодинамического предела количеству материала, которое может быть объединено в систему, нет термодинамического предела для значений, которые может принимать Ψ ′. Совершенно иная ситуация для Ψ ″.Как следует из уравнений (6) — (8) и (20), ″ зависит от концентрации вышеуказанных компонентов. Таким образом, это относится к энергии, которую эти компоненты имеют в результате их взаимного взаимодействия, когда они смешиваются вместе. Следовательно, любое термодинамическое ограничение энергии раствора электролита должно быть ограничением на Ψ ″, хотя полная свободная энергия раствора является суммой Ψ ″ плюс часть энергии Ψ ′, которую несет каждый компонент, независимо от присутствия. других компонентов.

На самом деле, можно проверить, что ″ — это лишь небольшая часть Ψ. Наибольшая часть общей свободной энергии, которую батарея может хранить или поставлять, связана с Ψ ′ и происходит за счет изменений в nh3O и nh3SO4, которые производятся химическими реакциями, происходящими в электролите. Как бы то ни было, ″ определяет допустимый диапазон электролита. Как следствие, ″ устанавливает предел полной свободной энергии батареи Ψ, поскольку он ограничивает диапазон изменения nh3O и nh3SO4.Аналогичная ситуация может также относиться к растворам, содержащим химически реагирующие компоненты. Например, в случае живой клетки часть свободной энергии цитозоля, которая определяет допустимый диапазон клетки, составляет лишь часть полной свободной энергии цитозоля [10]. В этом случае также небольшая часть общей свободной энергии цитозоля устанавливает предел для количества компонентов раствора, тем самым ограничивая энергию, которую живая клетка может хранить или выделять, и, следовательно, ее способность действовать.Чтобы сделать следующий анализ независимым от количества электролита, удобно ссылаться на молярную концентрацию ″ на кг растворителя. Эта концентрация энергии обозначается ψ ″ и получается делением обеих частей уравнения (20) на nh3OMh3O (т.е. на вес в килограммах воды, содержащейся в электролите):

ψ ″ = ψ ″ (nh3O, nh3SO4, nadd, p, T) = R T Mh3O [ln γh3O nh3O nh3O + nh3SO4 + nadd + nh3SO4nh3Oln γh3SO4 nh3SO4n h3O Mh3O3 + naddnO3Mh3O3 + naddnO3Mh3O3 + naddnO3

(21)

где V¯ — объем электролита на моль растворителя:

В обоих приведенных выше уравнениях nh3O является переменной, поскольку количество молей воды в электролите изменяется по мере зарядки или разрядки аккумулятора.

В дальнейшем температура считается постоянной. Более того, зависимость свободной энергии от p будет игнорироваться, как это обычно делается в отсутствие газовых фаз, а также при работе при постоянном давлении или почти таком. Таким образом, если ψmax ″ — значение, которое ψ ″ достигает в термодинамическом пределе, упомянутом выше, следующее соотношение:

применяется ко всем состояниям, которых может достичь электролит при рассматриваемой температуре. Вместе с уравнением (21) уравнение (23) определяет допустимый диапазон электролита в пространстве переменных nh3O, nh3SO4, nadd.Предельная поверхность электролита является границей этого диапазона:

Следовательно, он является эквипотенциальным для ψ ″ или Ψ ″ (одна и та же поверхность, однако, не является эквипотенциальным для полной свободной энергии системы или для ее части Ψ ′, как уравнения (18) и (19) показывать).

Несмотря на то, что V¯ переменный, он претерпевает незначительные изменения (менее примерно 0,3%) при нормальной работе от батареи. Что касается настоящего анализа, то член p ° V¯ / Mh3O, который появляется в уравнении (21), можно рассматривать как константу.Как следствие, его вкладом в ψ ″ и ψmax ″ можно в хорошем приближении пренебречь при применении уравнений (23) и (24), потому что добавление или вычитание постоянного члена к обеим сторонам этих соотношений несущественно. Соответственно, при определении допустимого диапазона и предельной поверхности электролита или предельной кривой батареи мы впредь будем игнорировать член -p ° V¯ / Mh3O в крайней правой части уравнения (21). С этим условием допустимый диапазон электролита можно выразить как:

R T Mh3O [lnγh3O nh3O nh3O + nh3SO4 + nadd + nh3SO4nh3Oln γh3SO4 nh3SO4n h3O Mh3O + naddnh3Olnγadd nadd n h3O Mh3O] ≤ψmax ″

(25)

В трехмерном пространстве (nh3O, nh3SO4, n добавить ) это соотношение определяет область всех состояний, которых может достичь электролит без необратимых изменений.Границей этой области является предельная поверхность электролита:

R T Mh3O [lnγh3O nh3O nh3O + nh3SO4 + nadd + nh3SO4nh3Oln γh3SO4 nh3SO4n h3O Mh3O + naddnh3Olnγadd nadd n h3O Mh3O] = ψmax ″

(26)

и он представляет собой поверхность в трехмерном пространстве, упомянутом выше.

4. Допустимый диапазон и предельная кривая батареи

Не все состояния допустимого диапазона из уравнения (25) могут быть доступны электролиту внутри батареи. При нормальных условиях эксплуатации аккумулятор не обменивается материалами с окружающей средой.В этих условиях общее количество молекул воды и серной кислоты внутри батареи остается постоянным. Это непосредственное следствие хорошо известной общей реакции, контролирующей работу батареи:

Pb (т.) + PbO 2 (т) + 2H 2 SO 4 (водн.) ⇌ 2PbSO 4 (т) + 2H 2 O (л)

(27)

При разряде аккумулятора реакция идет слева направо. Это дает две молекулы воды на каждые две молекулы серной кислоты, которые потребляются.Зарядка аккумулятора вызывает реакцию в противоположном направлении, в результате чего на каждые две молекулы потребленной воды выделяются две молекулы серной кислоты. В обоих случаях сумма nh3O и nh3SO4 остается постоянной. Таким образом, в любой момент процесса зарядки или разрядки аккумулятора мы имеем:

n h3O + nh3SO4 = n ¯

(28)

где n¯ — постоянная. Значение этой константы зависит от подготовки батареи и может быть определено по значениям nh3O и nh3SO4 в любое время срока службы батареи.В частности, пусть nh3Oo и nh3SO4o будут значениями nh3O и nh3SO4 электролита, который должен быть введен в батарею. Они совпадают со значениями nh3O и nh3SO4 в электролите внутри батареи, когда батарея начинает работать после заполнения. Следовательно, должно выполняться следующее уравнение:

n¯ = nh3Oo + nh3SO4o

(29)

который фиксирует n¯. Уравнение (28) может использоваться для исключения переменной nh3O из уравнений (25) и (26). Это уменьшает количество независимых переменных, фигурирующих в этих уравнениях, тем самым дополнительно ограничивая диапазон состояний, которые может достигать электролит.Более точно, вводя уравнение (28) в уравнение (25), мы получаем допустимый диапазон заряда батареи:

R T Mh3O [ln γh3O (n¯ − nh3SO4) n¯ + nadd + nh3SO4n¯ − nh3SO4ln γh3SO4 nh3SO4 (n¯ − nh3SO4) Mh3O + naddn¯ − nh3SO4lnγadd nadd (n¯4) −nh3O3

(30)

Это область плоскости (nh3SO4, n добавить ), которая содержит все состояния, которых может достичь электролит при нормальной работе батареи без необратимых изменений. Его граница — это предельная кривая батареи.Его можно получить, взяв знак равенства в уравнении (30):

R T Mh3O [ln γh3O (n¯ − nh3SO4) n¯ + nadd + nh3SO4n¯ − nh3SO4ln γh3SO4 nh3SO4 (n¯ − nh3SO4) Mh3O + naddn¯ − nh3SO4lnγadd nadd (n¯4) nh5O3

(31)

Эта кривая на плоскости (nh3SO4, n добавить ) ограничивает область всех состояний, которые электролит может обратимо достичь, когда он работает внутри батареи.

Уравнения (27) — (31) применимы к свинцово-кислотным батареям, содержащим нереагирующие добавки электролита, т.е.е. присадки, которые не вступают в химическую реакцию между собой или с другими компонентами батареи. В промышленных батареях обычно используются нереагирующие добавки. Как указывалось ранее, это единственные добавки, о которых мы говорим в данной статье. Те же уравнения также применимы, в частности, в отсутствие добавок электролита, и в этом случае n добавить = 0.

Типичная предельная кривая ψ ″ = ψmax ″ и, таким образом, перемещает состояние батареи вверх, т. Е. по линии AB на рисунке 1.Допустимый диапазон заряда батареи — это затененная область на кривой. Количество добавки в электролите остается постоянным во время заряда и разряда, поскольку добавка химически неактивна. Таким образом, зарядка или разрядка аккумулятора в этом диапазоне смещает состояние аккумулятора вверх и вниз по вертикальной линии, n добавить = константа в плоскости рисунка 1. Необратимые изменения происходят в электролите, если предельная кривая аккумулятора равна превышено. Более конкретно, зарядка батареи увеличивает nh3SO4 и, таким образом, перемещает состояние батареи вверх, т.е.е., по линии AB на фиг.1, процесс обратим, пока состояние батареи остается в пределах сегмента AB. Однако при превышении точки A на положительном электроде происходит выделение кислорода, что делает процесс необратимым. Аналогичная ситуация возникает при разряде. В этом случае процесс разряда потребляет серную кислоту, и состояние батареи перемещается вниз по линии AB. Точка B на предельной кривой батареи — это предел обратимой разрядки. За пределами этой точки напряжение батареи становится ниже, чем напряжение, необходимое для поддержания реакции отрицательного электрода:

Pb + H 2 SO 4 ⇌ PbSO 4 + H 2

(32)

в химическом равновесии.Это заставляет реакцию необратимо идти вправо. Это явление происходит сравнительно быстро и известно как сульфатирование. Это приводит к образованию нерастворимых кристаллов PbSO 2 на отрицательном электроде с сопутствующим выделением водорода. Выделение кислорода и водорода в пределах допустимого диапазона связано с электрохимическими окнами воды. Читателю предлагается обратиться к соответствующей литературе для получения подробной информации о химических реакциях, регулирующих электрохимическую стабильность воды в водных электролитах (см. E.g., ([13,14,15,16,17]). Ширина допустимого диапазона по вертикальной линии через n добавить обозначена как Δnh3SO4 на рисунке 1. Эта ширина представляет максимальное количество серной кислоты, которое на килограмм воды с растворителем, может обратимо реагировать согласно уравнению (27). Таким образом, чем больше эта ширина, тем большее количество энергии аккумулятор может хранить и производить без разрушения электролита. Максимальное значение Δnh3SO4 достигается при n add = nadd ∗ и обозначено как Δnh3SO4 ∗ на приведенном выше рисунке.Поскольку количество водного растворителя зависит от состояния заряда батареи, может быть удобно определять концентрацию добавки со ссылкой на фиксированное состояние заряда батареи. Это будет приниматься как гипотетическое состояние полного разряда, которого аккумулятор достигнет после того, как вся серная кислота в электролите будет израсходована в соответствии с уравнением (27). В этом состоянии количество воды в электролите будет n h3O = n¯, согласно уравнению (28). Поэтому, когда речь идет об этом гипотетическом состоянии, молярная концентрация добавки электролита, соответствующая nadd ∗, определяется как:

badd ∗ = nadd ∗ n¯ Mh3O

(33)

Это можно рассматривать как номинальную молярность добавки, которая требуется для получения максимальной емкости накопления энергии в батарее.

Пусть Δnh3SO4o будет значением Δnh3SO4, когда электролит аккумулятора не содержит присадок (см. Рисунок 1). Поскольку энергия, которую батарея может хранить или поставлять, пропорциональна молям серной кислоты, которые подчиняются уравнению (27), соотношение:

ηmax = Δnh3SO4 ∗ −Δnh3SO4oΔnh3SO4o

(34)

представляет собой наибольшее относительное увеличение максимальной емкости накопителя энергии, которое может быть получено от данной добавки к электролиту. Конечно, η max зависит от используемой добавки из-за зависимости от добавки на предельной кривой батареи.

5. Экспериментальное определение предельной кривой

Чтобы определить предельную кривую для батареи, нам нужно знать значения ψmax ″ и γ , прибавить , которые необходимо ввести в уравнение (31). Эти значения могут быть определены экспериментально следующим образом. Начнем с наблюдения, что уравнение (31) выполняется, в частности, когда электролит не содержит добавок. В этом случае n добавить = 0 и уравнение (31) сводится к:

R T Mh3O [ln γh3O (n¯ − nh3SO4) n¯ + nh3SO4n¯ − nh3SO4ln γh3SO4 nh3SO4 (n¯ − nh3SO4) Mh3O] = ψmax ″

(35)

Это уравнение применимо к пределу допустимого диапазона заряда батареи.Величина n¯, фигурирующая здесь, задается уравнением (29). Это зависит от подготовки аккумулятора, но не от наличия добавок электролита. Таким образом, работая с батареей, лишенной электролитной добавки, мы увеличиваем состояние заряда батареи до тех пор, пока не достигнем предельной точки, за которой кислород начинает выделяться на положительном электроде в условиях разомкнутой цепи (точка A ° на рисунке 1). Появление этого необратимого явления свидетельствует о том, что состояние аккумулятора достигло предельной кривой.Мы определяем значение nh3SO4 на этом пределе и подставляем его в уравнение (35). Таким образом, мы можем вычислить ψmax ″. Как известно, концентрация серной кислоты и напряжение аккумулятора связаны друг с другом (см., Например, [18,19,20,21]). Следовательно, вместо определения предельного значения nh3SO4 мы можем определить максимальное напряжение холостого хода, при котором батарея сохраняет свой заряд, не производя кислорода на положительном электроде. Это напряжение значительно выше стандартного (1.229 В) электролиза воды [22] из-за перенапряжения, возникающего на электродах батареи. Степень перенапряжения зависит от свойств поверхности электродов и от наличия в электродах небольших количеств различных добавок, вводимых при их изготовлении. Как видно из уравнений (20) и (21), функции ″ и ψ ″ не зависят от свободной энергии электродов. Однако перенапряжение, создаваемое электродами, влияет на допустимый диапазон и предельную кривую батареи, так как оно влияет на предельное значение nh3SO4 и, следовательно, на значение ψmax ″.Это приводит к тому, что допустимый диапазон и предельная кривая для батареи зависят от свойств батареи в целом, а не просто от свойств ее электролита.

Процедура определения γ add аналогична процедуре определения ψmax ″. Однако в этом случае электролит аккумулятора должен содержать известное количество присадки. Мы снова заряжаем аккумулятор до предела, при котором кислород образуется на положительном электроде в условиях разомкнутой цепи. Мы определяем соответствующее значение nh3SO4 и вставляем его вместе с рассматриваемым значением n , прибавляем в уравнение (31).Поскольку ψmax ″ уже определено, единственным неизвестным в этом уравнении является γ add , который, таким образом, может быть определен. Из-за наличия трансцендентных членов значение γ add лучше всего рассчитывать графически или численно.

В качестве примера рассмотрим типичный автомобильный аккумулятор при комнатной температуре (T = 25 ° C = 298,15 K). Мы предполагаем, что на момент изготовления электролит в батарее содержит 1 кг воды с молярной концентрацией серной кислоты для bh3SO4o = 6 моль / кг.Это означает, что nh3Oo = 55,51 моль и nh3SO4o = 6 моль. Таким образом, n¯ = 55,51 + 6 = 61,51 моль, как следует из уравнения (29). Оставляя электролит свободным от добавок, мы заряжаем аккумулятор и обнаруживаем, что bh3SO4 = 7,25 моль / кг — это самая высокая концентрация серной кислоты, которую аккумулятор может поддерживать в условиях разомкнутой цепи без образования кислорода на своем положительном электроде (эта концентрация соответствует напряжению 2,16 В — или 12,96 В для шестиэлементной батареи — по литературным данным [19]).Как видно, заряд и разряд аккумулятора происходят при постоянном n¯. Следовательно, с учетом уравнения (28), мы находим, что указанное выше значение bh3SO4 = 7,25 моль / кг означает nh3SO4 = 7,10 моль и nh3O = 54,41 моль в электролите батареи. Вводя в уравнение (35) значения γh3O и γh3SO4, соответствующие этому значению bh3SO4, которые доступны из литературы и указаны в Приложении, и вспоминая, что R = 8,3143 Дж · К −1 · моль −1 и Mh3O = 18,015 × 10 −3 кг · моль −1 , рассчитываем, что для рассматриваемой батареи ψmax ″ = −20.25 Дж · кг −1 .

Для определения γ add добавляем произвольное количество рассматриваемой добавки в электролит аккумулятора. Пусть, например, к n прибавляется = 5 моль. Используя модифицированную таким образом батарею, мы обнаруживаем, что предел разомкнутой цепи для выделения кислорода на положительном электроде возникает, когда заряд батареи соответствует количеству серной кислоты, например, nh3SO4 = 6,74 моль. Подставляя это значение nh3SO4 в уравнение (35), мы вычисляем, что γ добавляет = 0.64, что можно проверить из того же уравнения, если мы установим n , добавим = 5 моль, n¯ = 61,51 моль и ψmax ″ = -20,25 Дж · кг −1 .

Наконец, вставив эти значения n¯, ψmax ″ и γ , добавьте в уравнение (35) и, используя выражения γh3O и γh3SO4, приведенные в Приложении, мы получим аналитическое выражение предельной кривой рассматриваемая батарея. Эта кривая представлена ​​на рисунке 2. Из того же рисунка мы находим, что Δnh3SO4o = 5,48 моль и Δnh3SO4 ∗ = 6.14 мол. Это означает, что η max = 0,12 согласно уравнению (34). Таким образом, добавка к электролиту, рассматриваемая в этом примере, может увеличить емкость аккумулятора до 12%. Количество добавки, необходимое для получения максимальной емкости накопления энергии, составляет nadd ∗ = 1,48 моль, как показано на рисунке. Соответствующая номинальная моляльность добавки равна badd ∗ = 1,34 моль / кг согласно уравнению (33).

Различные добавки могут по-разному влиять на аккумулятор. Например, для той же батареи, рассмотренной в приведенном выше примере, добавка с γ добавляет = 0.3 может увеличить емкость аккумулятора на 25%. Это можно легко проверить из уравнения (35), построив предельную кривую для γ , добавьте = 0,3 и те же значения n¯ и ψmax ″, указанные выше. В этом случае количество добавки, обеспечивающей максимальную накопительную способность, будет nadd ∗ = 3,23 моль, что означает badd ∗ = 2,91 моль / кг.

В приведенном выше анализе мы рассматривали γ add как константу, таким образом пренебрегая любой возможной зависимостью γ add от концентрации добавки.Это может быть приемлемо, если концентрация добавки умеренно низкая (как в случае многих приложений) или если мы ограничиваем наше внимание достаточно малой частью предельной кривой. Если требуется более высокая точность, описанная выше процедура для определения γ add может быть повторена несколько раз для стольких различных значений n add по мере необходимости. Значения γ добавить , полученные таким образом, затем могут быть использованы для определения функции γ добавить (n добавить ), которая может быть заменена на γ добавить в уравнение (35), если приближение γ добавить = const.оказывается неадекватным.

Вместо того, чтобы заряжать аккумулятор до предела выделения кислорода, представленного точкой A ° на рисунке 1, мы могли бы — в принципе — определить ψmax ″, разрядив аккумулятор без добавок до точки B ° на том же рисунке. Это точка предельной поверхности батареи, на которой начинается сульфатирование отрицательного электрода. Как только концентрация серной кислоты, соответствующая этому нижнему пределу, определена, кривая предела может быть определена, как описано выше.Обе процедуры должны обеспечивать одинаковое значение ψmax ″, потому что и A °, и B ° принадлежат одной и той же кривой ψ ″ = ψmax ″. Однако ссылка на предел выделения кислорода кажется более практичной, поскольку сульфатирование — довольно медленное явление.

6. Выводы

Известно, что на энергоемкость свинцово-кислотного аккумулятора может влиять присутствие добавок в его электролите. Понятие эквивалентной добавки, определенное в этой статье, помогает проанализировать влияние химически инертных добавок и смесей таких добавок на энергоемкость батареи.Это может быть применено для определения всей области концентраций электролита, называемой допустимым диапазоном батареи, в пределах которой не происходит необратимых изменений в батарее во время заряда или разряда. Граница этой области — граничная кривая батареи. Он соответствует концентрации серной кислоты и, следовательно, диапазону напряжений холостого хода, которые нельзя превышать без необратимых изменений в батарее. Граничная кривая батареи может быть построена из нескольких экспериментов, в которых батарея заряжается (или разряжается) при различных концентрациях добавок.Это дает полезную информацию об эффективности добавки для увеличения энергоемкости батареи и о наилучшей концентрации добавки, которую можно использовать для этой цели. Практические последствия выбора лучшей добавки очевидны. Однако следует иметь в виду, что добавка может также вызывать нежелательные побочные эффекты, которые не рассматриваются в настоящей работе и требуют адекватного изучения, прежде чем любое улучшение энергоемкости батареи в результате добавки может рассматриваться как практическое.

Советы по установке и обслуживанию свинцово-кислотных аккумуляторов

Стив Хиггинс, менеджер по техническому обслуживанию Rolls Battery, освещает некоторые из часто задаваемых вопросов, когда дело доходит до надлежащего обслуживания и ремонта свинцово-кислотных аккумуляторов.

Когда выполнять зарядку эквалайзера?

Если вы регулярно полностью заряжаете свинцово-кислотный аккумуляторный блок, вам никогда не придется эквалайзировать аккумуляторный блок.

Если вы обнаружили разницу в измеренных значениях удельного веса более чем на.От 025 до 0,030 балла, тогда может потребоваться корректирующий эквалайзер.

Корректирующее выравнивание должно выполняться, когда уровень заряда батареи составляет 100% SOC. Просмотрите и завершите предоставленные приготовления, прежде чем инициировать выравнивающий заряд.
Время выравнивания будет варьироваться в зависимости от уровня сульфатирования, баланса заряда, размера аккумуляторной батареи и доступного источника зарядки. Как правило, корректирующее выравнивание необходимо каждые 60–180 дней для десульфатирования и уравновешивания банка аккумуляторов в системах, которые работают в режиме дефицита, циклически меняются и / или заряжаются при более низких токах заряда.Если несколько параллельных цепочек показывают дисбаланс заряда, может потребоваться выравнивание каждой цепочки индивидуально.
Важно следить за удельным весом и напряжением на протяжении всего процесса выравнивания. Когда показания удельного веса остаются постоянными в течение 45-60 минут, это обычно свидетельствует о завершении.

Подготовка:
— Необходимое оборудование: защитные очки, резиновые перчатки и резиновые сапоги, ареометр или рефрактометр, вольтметр, дистиллированная вода, пищевая сода или кальцинированная сода на случай возможного перелива или разлива
— Стандартные байонетные колпачки на 1/4 оборота и рекомбинационные колпачки Rolls R-Cap с откидной крышкой можно оставить включенными во время этой процедуры.Грязные или забитые колпачки могут препятствовать выделению газообразного водорода. При необходимости осмотрите и очистите крышки. Гидрокапсулы необходимо удалить.
— Проверьте каждую ячейку на предмет низкого уровня электролита и / или открытых пластин и при необходимости долейте дистиллированную воду. Если ячейки требуют полива, сделайте это перед запуском процесса выравнивания, чтобы обеспечить достаточное смешивание с существующим электролитом. Будьте осторожны, чтобы не переполнить, так как электролит будет пузыриться и может вылиться через край во время процесса.
— Запрограммируйте выравнивающее напряжение, как рекомендовано в параметрах зарядки Rolls Flooded Charging, начиная с нижнего предела диапазона напряжения для новых моделей.

Процедура:
1. Завершите объемную и абсорбционную зарядку, чтобы довести уровень заряда батареи до 100% SOC, прежде чем запускать корректирующее выравнивание.
2. Измерьте температуру испытательной ячейки и запишите удельный вес каждой ячейки в батарейном блоке. Определите ячейки с высокими / низкими показаниями.
3. Включите режим выравнивающего заряда при стабильно низком постоянном токе (5-10% емкости аккумулятора C / 20). Если сетевое питание недоступно, по возможности используйте источник постоянного тока (генератор) или фотоэлектрическую батарею с достаточным током.
4. Удельный вес в батарее будет увеличиваться, в идеале достигая 1,265–1,270 в каждой ячейке после завершения. Показания в некоторых элементах могут быть немного повышены из-за температуры электролита (Пример 1.280) и вернутся к норме при охлаждении, но не должны превышать 1,30. Если температура элемента поднимается выше 46ºC (115ºF) и приближается к 52ºC (125ºF), прекратите процесс выравнивания и дайте батареям остыть. Если возможно, проверьте температуру отдельных ячеек с помощью ИК-датчика температуры, чтобы изолировать любые возможные поврежденные ячейки.
5. Если клетки сильно сульфатированы, для повышения и / или баланса удельного веса может потребоваться несколько часов. Если показания плато в течение 45–60 минут, но не достигают 1,265–1,270, остановите процесс, чтобы предотвратить повреждение элементов, и дайте батареям нормально проработать цикл в течение 2–4 недель перед повторением. Элементы будут продолжать десульфатироваться после выравнивания, поскольку сульфат растворяется во время нормальной зарядки.

Дайте аккумулятору остыть в течение 1-2 часов. Проверьте и запишите удельный вес каждой ячейки.Плотность должна быть 1,265 ± 0,005 или ниже. Проверьте уровень электролита и при необходимости долейте дистиллированную воду.
Рекомендуется регулярно измерять и записывать показания удельного веса одной пилотной ячейки, если предполагается, что батарея полностью заряжена. Измерение следует сравнить с предыдущими показаниями. Если результат измерения ниже предыдущего, следует использовать более длительное время поглощения и / или более высокое напряжение. Чем больше время абсорбции и чем выше объемное напряжение, тем больше воды будет потребляться, но потребуется меньше выравнивания.
ПРИМЕЧАНИЕ. Удельный вес должен увеличиваться, так как ячейки используют воду. Следите за тенденциями изменения удельного веса в течение определенного периода времени и при необходимости вносите небольшие изменения.

При заливке дистиллированной воды в аккумулятор, до какого уровня долить воду?

ЭЛЕКТРОЛИТ — ДОБАВЛЕНИЕ ДИСТИЛЛИРОВАННОЙ ВОДЫ
В залитых элементах аккумуляторных батарей следует использовать только дистиллированную (предпочтительно), деионизированную или обратноосмотическую воду. Неправильный полив может вызвать повреждение внутренних клеток.Протестируйте воду, чтобы подтвердить показание pH 7 или меньше и отсутствие общего растворенного твердого вещества (TDS <5 PPM).

ПРИМЕЧАНИЕ. Не добавляйте серную кислоту в залитые аккумуляторные элементы во время обычной заправки. В случае случайного разлива можно использовать предварительно смешанный электролит (1,265 S.G.) для пополнения ячеек.

ВНИМАНИЕ! Не добавляйте воду или электролит в элементы перед первоначальной зарядкой, если пластины не обнажены. Если да, долейте дистиллированную воду до тех пор, пока пластины не будут погружены в воду. Пожалуйста, свяжитесь со службой технической поддержки Rolls, если у вас есть какие-либо вопросы или проблемы.

ПРИМЕЧАНИЕ. Если аккумуляторные элементы необходимо поливать чаще, чем раз в два (2) месяца, запрограммированные зарядные напряжения могут быть слишком высокими. Отрегулируйте и контролируйте соответственно. Если конкретный элемент требует значительно больше воды, чем другие, это может быть признаком дисбаланса заряда в батарее, вызванного сопротивлением и / или отказом элемента. Как правило, модели серий 4000 и 4500 требуют полива каждые 30-60 дней. Аккумуляторы серии 5000 обычно требуют полива каждые 60-90 дней, поскольку эти модели разработаны с более высоким запасом электролита, что позволяет увеличивать интервалы между поливами.Частота может значительно варьироваться в зависимости от рабочей температуры, глубины разряда, частоты цикла и влажности.

Уровень воды должен быть не выше 6-13 мм от нижней части заливной трубки в батарее (см. Рисунок ниже в качестве примера).

Справочную информацию о расстоянии между ячейками модели с затоплением, используемую при определении размеров систем полива, см. В следующем документе «Расстояние между ячейками с заливкой».

Где должен быть установлен датчик температуры аккумулятора?

Для обеспечения точности и безопасности заряда многие системы используют датчик, установленный на батарее, для измерения температуры элемента и соответствующей регулировки напряжения заряда.Датчики температуры должны быть установлены непосредственно на стороне элемента или батареи в центре блока и должны быть надежно закреплены ниже уровня электролита для точного определения температуры элемента. При использовании зарядных устройств, в которых отсутствует температурная компенсация, следует контролировать настройки напряжения и корректировать их в зависимости от фактической температуры элемента. Неиспользование или неправильная установка предоставленного датчика может привести к повреждению из-за чрезмерной / недостаточной зарядки, на что не распространяется гарантия производителя Rolls Battery.В качестве меры предосторожности этот датчик может также вызвать запрограммированное защитное отключение заряда, поскольку рабочая температура аккумуляторной батареи не должна превышать 52ºC (125ºF).

Series 4000, 4500, VRLA AGM и OPzV GEL модели — датчик температуры должен быть установлен на батарее в середине цепочки или батарейного блока. Чтобы обеспечить точное считывание температуры ячейки, датчик должен быть установлен ниже уровня жидкости на затопленных моделях, а не прикреплен к клемме или верхней части батарейного отсека, поскольку эти области обычно холоднее, чем внутренняя ячейка.Для традиционных моделей с залитой водой, VRLA AGM и OPzV GEL компания Rolls рекомендует прикреплять датчик на полпути вниз по краю батареи и / или на расстоянии 10–12 см (4–5 дюймов) от верхней части корпуса для наиболее точного измерения температуры.

Модели с двумя контейнерами

— Если батарея имеет модульную конструкцию с двумя контейнерами, датчик температуры должен быть установлен непосредственно сбоку внутреннего элемента. Чтобы получить доступ к ячейке, отсоедините клеммные соединения и снимите внешнюю крышку, которая защелкивается на корпусе, или можно использовать небольшие съемные пластиковые штифты.Установите датчик во внутреннюю ячейку и пропустите соединительный кабель между корпусом, соблюдая осторожность, чтобы не защемить или не повредить провод при установке крышки на место. Автомобильный силикон используется для уплотнения вокруг каждой клеммы для защиты от разливов, пыли и мусора. Это может быть применено повторно после сборки корпуса.

Модели

с двумя контейнерами — Снимите крышку корпуса. Установите датчик сбоку от внутренней ячейки ниже уровня жидкости. Установите на место крышку и снова заклейте клеммы силиконом.

Датчики не должны устанавливаться на верхней части батарейного отсека / элемента или клеммы, так как это не обеспечивает точных показаний температуры электролита.

См. Температуру инфракрасного излучения, показанную ниже:

О батарее Rolls:

Линия продуктов

Rolls предлагает премиальные аккумуляторы глубокого разряда с широким диапазоном значений напряжения и емкости. Торговая марка Rolls и ярко-красные корпуса хорошо известны во всем мире и олицетворяют нашу давнюю приверженность обеспечению высочайшего качества, надежности и поддержки.Залитые и герметичные батареи в рулонах снова и снова выбираются профессионалами отрасли и клиентами.

Новый аккумуляторный электролит может расширить линейку электромобилей

Марк Шварц

Новый электролит на основе лития, изобретенный учеными Стэнфордского университета, может проложить путь для следующего поколения электромобилей с батарейным питанием.

В исследовании, опубликованном 22 июня в журнале Nature Energy , исследователи из Стэнфорда демонстрируют, как их новая конструкция электролита повышает производительность литий-металлических батарей — многообещающей технологии для питания электромобилей, ноутбуков и других устройств.

Слева — обычный (прозрачный) электролит, а справа — новый Стэнфордский электролит
. (Изображение предоставлено: Чжиао Юй)

«Большинство электромобилей работают на литий-ионных батареях, которые быстро приближаются к своему теоретическому пределу по плотности энергии», — сказал соавтор исследования И Цуй, профессор материаловедения, инженерии и фотоники в Национальной ускорительной лаборатории SLAC. «Наше исследование было сосредоточено на литий-металлических батареях, которые легче литий-ионных батарей и потенциально могут обеспечивать больше энергии на единицу веса и объема.”

Литий-ионные в сравнении с металлическим литием

Литий-ионные батареи

, используемые во всем, от смартфонов до электромобилей, имеют два электрода — положительно заряженный катод, содержащий литий, и отрицательно заряженный анод, обычно сделанный из графита. Раствор электролита позволяет ионам лития перемещаться между анодом и катодом, когда батарея используется и когда она заряжается.

Литий-металлический аккумулятор может содержать примерно в два раза больше электроэнергии на килограмм, чем современные литий-ионные аккумуляторы.Литий-металлические батареи делают это путем замены графитового анода металлическим литием, который может хранить значительно больше энергии.

«Литий-металлические батареи очень перспективны для электромобилей, где вес и объем имеют большое значение», — сказал соавтор исследования Женан Бао, K.K. Ли Профессор инженерной школы. «Но во время работы анод из металлического лития вступает в реакцию с жидким электролитом. Это вызывает рост микроструктур лития, называемых дендритами, на поверхности анода, что может привести к возгоранию батареи и ее выходу из строя.”

Исследователи потратили десятилетия, пытаясь решить проблему дендритов.

«Электролит был ахиллесовой пятой литий-металлических батарей», — сказал соавтор исследования Чжао Юй, аспирант по химии. «В нашем исследовании мы используем органическую химию для рационального проектирования и создания новых стабильных электролитов для этих батарей».

Электролит новый

Для исследования Ю и его коллеги выяснили, могут ли они решить проблемы стабильности с помощью обычного, коммерчески доступного жидкого электролита.

«Мы предположили, что добавление атомов фтора к молекуле электролита сделает жидкость более стабильной», — сказал Ю. «Фтор — широко используемый элемент в электролитах литиевых батарей. Мы использовали его способность притягивать электроны, чтобы создать новую молекулу, которая позволяет аноду из металлического лития хорошо функционировать в электролите ».

В результате получилось новое синтетическое соединение, сокращенно FDMB, которое можно легко производить в больших объемах.

«Конструкции электролитов становятся очень экзотичными, — сказал Бао.«Некоторые из них оказались многообещающими, но их производство очень дорогое. Молекула FDMB, которую придумал Чжиао, легко производить в больших количествах и довольно дешево ».

«Невероятная производительность»

Команда Стэнфорда провела испытания нового электролита в литий-металлической батарее.

Результаты были впечатляющими. Экспериментальная батарея сохранила 90 процентов своего первоначального заряда после 420 циклов зарядки и разрядки. В лабораториях типичные литий-металлические батареи перестают работать примерно через 30 циклов.

Докторанты и ведущие авторы Хансен Ван (слева) и Чжиао Ю (справа) тестируют
экспериментальную ячейку в своей лаборатории. (Изображение предоставлено Hongxia Wang.)

Исследователи также измерили, насколько эффективно ионы лития переносятся между анодом и катодом во время зарядки и разрядки, это свойство известно как «кулоновская эффективность».

«Если вы зарядите 1000 ионов лития, сколько вы получите обратно после разрядки?» — сказал Цуй. «В идеале вы хотите 1000 из 1000 для 100-процентного кулоновского КПД.Чтобы быть коммерчески жизнеспособным, элемент батареи должен иметь кулоновскую эффективность не менее 99,9 процента. В нашем исследовании мы получили 99,52 процента в половинных ячейках и 99,98 процентов в полных ячейках; невероятная производительность ».

Батарея безанодная

Для потенциального использования в бытовой электронике команда Стэнфордского университета также провела испытания электролита FDMB в безанодных литий-металлических ячейках — коммерчески доступных батареях с катодами, которые поставляют литий на анод.

«Идея состоит в том, чтобы использовать литий только на катодной стороне, чтобы уменьшить вес», — сказал соавтор исследования Хансен Ван, аспирант в области материаловедения и инженерии.«Безанодная батарея проработала 100 циклов, прежде чем ее емкость упала до 80 процентов — не так хорошо, как эквивалентная литий-ионная батарея, которая может выдерживать от 500 до 1000 циклов, но все же одна из самых эффективных безанодных элементов».

«Эти результаты показывают многообещающие результаты для широкого диапазона устройств», — добавил Бао. «Легкие безанодные батареи станут привлекательным элементом для дронов и другой бытовой электроники».

Аккумулятор 500

Министерство энергетики США (DOE) финансирует большой исследовательский консорциум под названием Battery500, чтобы сделать литий-металлические батареи жизнеспособными, что позволит производителям автомобилей создавать более легкие электромобили, которые могут преодолевать гораздо большие расстояния между зарядками.Это исследование было частично поддержано грантом консорциума, в который входят Стэнфорд и SLAC.

За счет улучшения анодов, электролитов и других компонентов Battery500 стремится почти в три раза увеличить количество электроэнергии, которое может выдать литий-металлический аккумулятор, с примерно 180 ватт-часов на килограмм, когда программа стартовала в 2016 году, до 500 ватт-часов на килограмм. Более высокое отношение энергии к весу, или «удельная энергия», является ключом к решению проблемы запаса хода, которую часто испытывают потенциальные покупатели электромобилей.

«Безанодная батарея в нашей лаборатории обеспечивает мощность около 325 ватт-часов на килограмм удельной энергии, приличное число», — сказал Цуй. «Нашим следующим шагом могла бы стать совместная работа с другими исследователями Battery500 над созданием ячеек, которые приблизятся к цели консорциума — 500 ватт-часов на килограмм».


Испытание на воспламеняемость обычного карбонатного электролита (слева) и нового электролита FDMB (справа) разработано
в Стэнфорде. Обычный карбонатный электролит воспламеняется сразу после прикосновения к пламени, но электролит
FDMB может выдерживать прямое пламя в течение как минимум трех секунд.(Кредит Чжиао Ю)

Помимо более длительного срока службы и лучшей стабильности, электролит FDMB также гораздо менее воспламеняем, чем обычные электролиты, как исследователи продемонстрировали во встроенном видео.

«Наше исследование в основном обеспечивает принцип конструкции, который люди могут применять для создания более качественных электролитов», — добавил Бао. «Мы только что показали один пример, но есть много других возможностей».

Другие соавторы Стэнфордского университета: Цзянь Цинь , доцент кафедры химического машиностроения; докторанты Сянь Конг, Кеченг Ван, Вэньсяо Хуанг, Снехашис Чоудхури и Чибуезе Аманчукву; аспиранты Уильям Хуанг, Ючи Цао, Дэвид Маканич, Ю Чжэн и Саманта Хунг; и студенты Ютинг Ма и Эдер Ломели.Синьчан Ван из Университета Сямэнь также является соавтором. Чжэнань Бао и И Цуй — старшие научные сотрудники Стэнфордского Precourt Institute for Energy . Цуй также является ведущим исследователем в Стэнфордском институте материаловедения и энергетики , совместной исследовательской программе SLAC / Стэнфорд.

Эта работа также была поддержана Программой исследования материалов для аккумуляторов Департамента автомобильных технологий Министерства энергетики США. Два соавтора поддерживаются Программой стипендий для аспирантов Национального научного фонда и стипендией Центра TomKat в области устойчивой энергетики в Стэнфорде.Средство, используемое в Стэнфорде, поддерживается Национальным научным фондом.

Как восстановить автомобильный аккумулятор

Все автомобили нуждаются в аккумуляторной батарее, независимо от того, имеют ли они двигатели внутреннего сгорания, гибридные или электрические. Но аккумулятор также является одной из многих вещей в нашем автомобиле, которые мы принимаем как должное, пока машина не заводится. Поверните ключ как хотите или несколько раз нажмите кнопку зажигания, но разряженная батарея — это разряженная батарея.

В автомобилях с двигателем внутреннего сгорания (ДВС) используются стандартные свинцово-кислотные аккумуляторные батареи с жидким электролитом — знакомые 12-вольтовые черные ящики.Гибриды добавляют никель-металлгидридную (NiMH) или литий-ионную (Li-ion) батарею большего размера для питания небольшого электродвигателя, который помогает ДВС улучшить экономию топлива. Кроме того, у нас есть подключаемые к сети гибридные и электромобили, которые, как правило, оснащены литий-ионными аккумуляторными батареями большого размера, обеспечивающими чистый запас хода на электричестве.

Назад к дилемме мертвой батареи. В этой статье мы говорим о 12-вольтовых свинцово-кислотных аккумуляторах, и когда кто-то выходит из строя, очевидным решением является быстрый старт или перезарядка аккумулятора.С традиционными батареями также просто (но, возможно, дорого) посетить местный магазин автомобильных запчастей или крупную розничную торговлю, чтобы купить замену. Но что, если вместо того, чтобы заменять батарею каждый раз, когда она умирает, вы могли бы просто зарядить ее до полной мощности — и делать это несколько раз?

Что такое восстановление батареи?

При подаче энергии на транспортное средство или устройство происходит процесс разряда батареи, известный как сульфатирование. Эта химическая реакция приводит к накоплению кристаллов сульфата на пластинах батареи.Больше кристаллов означает более длительное время зарядки, меньшую эффективность и меньшую емкость заряда. Восстановление или восстановление аккумулятора очищает от этих сульфатов, пополняет раствор электролита внутри и позволяет аккумулятору перезаряжаться и функционировать как новый.

Как восстановить автомобильный аккумулятор в домашних условиях

Следующее относится к свинцово-кислотным аккумуляторам. Хотя вам не нужно ждать, пока батарея разрядится, чтобы восстановить ее, прежде всего позаботьтесь о безопасности. Быстрый визуальный осмотр позволит определить, можно ли отремонтировать аккумулятор.Проверьте, нет ли трещин, выпуклостей или обломков любого вида. Если аккумулятор не в хорошей физической форме, лучше всего приобрести новый.

Процесс восстановления аккумуляторной батареи не требует диплома инженера, но требует терпения. Большинство вещей, которые вам понадобятся, скорее всего, будет у вас дома. Ниже приведен основной список принадлежностей:

Оборудование:

  • Защитная одежда (например, защитные очки, химически стойкие перчатки, фартук)
  • Зубная щетка
  • Стальная вата или очиститель клемм аккумулятора
  • Отвертка с плоской головкой
  • Воронка
  • Два больших ведра

Состав:

  • 1 галлон дистиллированной воды (без добавления химикатов)
  • 1 фунт пищевой соды
  • 1 фунт английской соли

Специальные предметы:

  • Зарядное устройство для аккумулятора
  • Вольтметр

Пошаговое руководство по восстановлению батареи

Подберите костюм и отдохните — Возможно, это не ракетостроение, но это все же наука.Все могло запутаться. Убедитесь, что вы работаете в хорошо проветриваемом помещении.

Создайте чистящий раствор — Используйте пищевую соду и воду в соотношении 2: 1, чтобы создать жидкую пасту. Эта смесь послужит очистителем аккумулятора, а также сократит разлив кислоты.

Очистите аккумулятор — Если клеммы аккумулятора корродировали, нанесите чистящую пасту (или специальное средство для очистки аккумулятора) на стойки и сотрите налет зубной щеткой.Реакция пенообразования означает, что раствор работает. Для сильно корродированных аккумуляторов используйте стальную вату. Полностью очистите, протрите и высушите клеммы.

Проверить напряжение — Подключить вольтметр. Как и при запуске автомобиля, красный кабель подключается к положительной клемме, а черный кабель — к отрицательной. Стандартный автомобильный аккумулятор содержит шесть ячеек, каждая из которых вырабатывает около 2,1 вольт. Следовательно, здоровая батарея будет показывать 12,6 В. Значение между 10 В и 12,6 В означает, что вы можете восстановить батарею.При напряжении менее 10 В замените батарею.

Опорожните аккумуляторные элементы — До сих пор вам не нужно было снимать аккумулятор автомобиля. Однако на этом этапе вам следует это сделать. Держите рядом ведро с полфунта пищевой соды. Снимите крышку аккумуляторного отсека и с помощью отвертки с плоским жалом снимите находящиеся под ней крышки элементов. По очереди медленно выливайте содержимое ячеек в ведро. Вы можете добавлять пищевую соду по ходу или после того, как все ячейки опустеют. В любом случае он нейтрализует кислоту аккумулятора для безопасной утилизации на любом предприятии, например, в центре переработки, где принимаются опасные отходы.

Очистите элементы батареи — Используя воронку, залейте чистящий раствор в каждую ячейку. Надежно установите на место крышки элементов и крышку аккумуляторного отсека. Теперь встряхните батарею не менее минуты. Распечатайте и утилизируйте смесь в существующее старое ведро для отходов кислоты.

Заменить раствор аккумуляторной батареи — Смешайте 4 стакана воды с 4 унциями английской соли. Перемешивайте, пока вода не станет прозрачной. Кипяченая вода ускоряет процесс, но в этом нет необходимости.С помощью воронки снова заполните ячейки новым раствором электролита. Накройте крышкой и снова встряхните, чтобы соль равномерно распределилась.

Зарядите аккумулятор — Как хорошая грудинка, выполняйте этот шаг медленно и медленно. Установите в безопасном и безопасном месте. В качестве дополнительной меры предосторожности снова снимите крышки аккумулятора, так как раствор электролита нагреется и может вылиться из него во время зарядки. Разместите зарядное устройство как можно дальше от аккумулятора и подключите его со скоростью 12 В / 2 А.Дайте аккумулятору зарядиться в течение 36 часов.

Проверьте аккумулятор — Отсоедините зарядное устройство и с помощью вольтметра проверьте состояние аккумулятора. Нормальные показания составляют около 12,42 В. Если у вас ниже, зарядите его еще раз в течение 12 часов. Когда все готово, проведите тест под нагрузкой, переустановив аккумулятор и повернув автомобиль в положение «Вкл.» С включенным дальним светом. Через несколько минут снова проверьте аккумулятор, пока он находится под нагрузкой. Если на показаниях вольтметра указано 9.6В, поздравляю! Вы успешно восстановили аккумулятор в автомобиле.

Срок службы восстановленной батареи зависит от ее возраста и имеющейся емкости. Теоретически вы сможете повторить этот процесс еще несколько раз, что означает продление срока службы батареи сверх стандартных трех-пяти лет.

Свинцово-кислотные батареи

| PVEducation

5 свинцово-кислотных аккумуляторов

Свинцово-кислотные батареи — наиболее часто используемый тип батарей в фотоэлектрических системах.Хотя свинцово-кислотные батареи имеют низкую плотность энергии, умеренную эффективность и высокие требования к техническому обслуживанию, они также имеют длительный срок службы и низкие затраты по сравнению с другими типами батарей. Одним из исключительных преимуществ свинцово-кислотных аккумуляторов является то, что они являются наиболее часто используемой формой аккумуляторов для большинства аккумуляторных батарей (например, для запуска двигателей автомобилей) и, следовательно, имеют хорошо зарекомендовавшую себя зрелую технологическую базу.

Рисунок: Изменение напряжения в зависимости от степени заряда для нескольких различных типов батарей.

Свинцово-кислотная батарея состоит из отрицательного электрода из губчатого или пористого свинца. Свинец пористый, что способствует образованию и растворению свинца. Положительный электрод состоит из оксида свинца. Оба электрода погружены в электролитический раствор серной кислоты и воды. В случае, если электроды входят в контакт друг с другом в результате физического движения батареи или изменения толщины электродов, два электрода разделяет электрически изолирующая, но химически проницаемая мембрана.Эта мембрана также предотвращает короткое замыкание через электролит. Свинцово-кислотные батареи накапливают энергию за счет обратимой химической реакции, показанной ниже.

Общая химическая реакция:

PbO2 + Pb + 2h3SO4⇔заряженный разряд2PbSO4 + 2h3O

На минусовой клемме реакции заряда и разряда:

Pb + SO42-заряженныйразрядPbSO4 + 2e-

На положительном выводе реакции заряда и разряда:

PbO2 + SO42- + 4H ++ 2e-заряженный разрядPbSO4 + 2h3O

Как показывают приведенные выше уравнения, разрядка батареи вызывает образование кристаллов сульфата свинца как на отрицательной, так и на положительной клеммах, а также высвобождение электронов из-за изменения валентного заряда свинца.Для образования этого сульфата свинца используется сульфат сернокислотного электролита, окружающего аккумулятор. В результате электролит становится менее концентрированным. Полный разряд приведет к тому, что оба электрода будут покрыты сульфатом свинца и водой, а не серной кислотой, окружающей электроды. При полном разряде два электрода сделаны из одного материала, и между двумя электродами отсутствует химический потенциал или напряжение. На практике, однако, разряд прекращается при напряжении отсечки, задолго до этого момента.Поэтому аккумулятор не должен разряжаться ниже этого напряжения.

Между полностью разряженным и заряженным состояниями свинцово-кислотная батарея будет испытывать постепенное снижение напряжения. Уровень напряжения обычно используется для обозначения степени заряда аккумулятора. Зависимость аккумулятора от уровня заряда показана на рисунке ниже. Если аккумулятор оставить на низком уровне заряда в течение длительного периода времени, могут вырасти крупные кристаллы сульфата свинца, что необратимо снижает емкость аккумулятора.Эти более крупные кристаллы не похожи на типичную пористую структуру свинцового электрода, и их трудно преобразовать обратно в свинец.

В результате реакции зарядки сульфат свинца на отрицательном электроде превращается в свинец. На положительном конце реакция превращает свинец в оксид свинца. В качестве побочного продукта этой реакции выделяется водород. Во время первой части цикла зарядки преобладающей реакцией является превращение сульфата свинца в свинец и оксид свинца. Однако по мере того, как происходит зарядка и большая часть сульфата свинца превращается либо в свинец, либо в диоксид свинца, зарядный ток электролизует воду из электролита, и выделяются водород и газообразный кислород, процесс, известный как «выделение газа» из батареи.Если ток подается в батарею быстрее, чем может быть преобразован сульфат свинца, то выделение газа начинается до того, как весь сульфат свинца будет преобразован, то есть до того, как батарея будет полностью заряжена. Газообразование создает несколько проблем в свинцово-кислотной батарее. Газовыделение батареи не только вызывает проблемы безопасности из-за взрывоопасной природы производимого водорода, но также снижает количество воды в батарее, которую необходимо заменять вручную, вводя в систему компонент для обслуживания.Кроме того, выделение газа может вызвать отделение активного материала от электролита, что приведет к необратимому снижению емкости аккумулятора. По этим причинам аккумулятор не следует регулярно заряжать выше напряжения, которое вызывает газообразование. Напряжение газовыделения изменяется в зависимости от скорости заряда.

Сульфат свинца является изолятором, и поэтому способ образования сульфата свинца на электродах определяет, насколько легко можно разрядить аккумулятор.

Для большинства систем возобновляемой энергии наиболее важными характеристиками батареи являются срок службы батареи, глубина разряда и требования к обслуживанию батареи.Этот набор параметров и их взаимосвязь с режимами зарядки, температурой и возрастом описаны ниже.

Глубина разряда в сочетании с емкостью батареи является фундаментальным параметром в конструкции блока батарей для фотоэлектрической системы, поскольку энергия, которая может быть извлечена из батареи, определяется умножением емкости батареи на глубину разряда. Батареи классифицируются как батареи глубокого или мелкого цикла. Глубина разряда батареи глубокого цикла может превышать 50%, а может достигать 80%.Чтобы достичь такой же полезной емкости, аккумуляторная батарея с малым циклом должна иметь большую емкость, чем аккумуляторная батарея с глубоким циклом.

Помимо глубины разряда и номинальной емкости аккумулятора, мгновенная или доступная емкость аккумулятора сильно зависит от скорости разряда аккумулятора и рабочей температуры аккумулятора. Емкость аккумулятора падает примерно на 1% на градус ниже примерно 20 ° C. Однако высокие температуры также не идеальны для аккумуляторов, поскольку они ускоряют старение, саморазряд и расход электролита.На приведенном ниже графике показано влияние температуры и скорости разряда аккумулятора на емкость аккумулятора.

Рисунок: Взаимосвязь между емкостью батареи, температурой и скоростью разряда.

Со временем емкость батареи снижается из-за сульфатирования батареи и выделения активного материала. Ухудшение емкости аккумулятора наиболее сильно зависит от взаимосвязи следующих параметров:

  • режим зарядки / разрядки аккумулятора
  • DOD батареи в течение срока ее службы
  • его подверженность длительным периодам низкого разряда
  • средняя температура аккумулятора за весь срок его службы

На следующем графике показано изменение функции батареи в зависимости от количества циклов и глубины разряда для свинцово-кислотной батареи с малым циклом.Свинцово-кислотная батарея глубокого разряда должна иметь срок службы более 1000 циклов даже при глубине разряда более 50%.

Рисунок: Взаимосвязь между емкостью батареи, глубиной разряда и сроком службы для батареи с малым циклом разряда.

Помимо DOD, режим зарядки также играет важную роль в определении срока службы батареи. Перезаряд или недозаряд батареи приводит либо к потере активного материала, либо к сульфатированию батареи, что значительно сокращает срок ее службы.

Рисунок: Влияние режима зарядки на емкость аккумулятора.

Окончательное влияние на зарядку аккумулятора связано с температурой аккумулятора. Хотя емкость свинцово-кислотной батареи снижается при работе при низких температурах, работа при высоких температурах увеличивает скорость старения батареи.

Рисунок: Взаимосвязь между емкостью батареи, температурой и сроком службы для батареи глубокого цикла.

Кривые разряда при постоянном токе для свинцово-кислотной батареи емкостью 550 Ач при различных скоростях разряда с ограничивающим напряжением 1.85 В на ячейку (Mack, 1979). Более длительное время разряда увеличивает емкость аккумулятора.

Производство водорода и кислорода из батареи приводит к потере воды, поэтому в свинцово-кислотных батареях необходимо регулярно заменять воду. Другие компоненты аккумуляторной системы не требуют регулярного обслуживания, поэтому потеря воды может стать серьезной проблемой. Если система находится в удаленном месте, проверка потери воды может увеличить затраты. Батареи, не требующие обслуживания, ограничивают потребность в регулярном внимании, предотвращая или уменьшая количество газа, выходящего из батареи.Однако из-за коррозионной природы электролита все батареи в некоторой степени вносят дополнительный компонент для технического обслуживания в фотоэлектрическую систему.

Свинцово-кислотные батареи обычно имеют кулоновский КПД 85% и КПД по энергии порядка 70%.

В зависимости от того, какая из вышеперечисленных проблем является наиболее важной для конкретного приложения, соответствующие модификации базовой конфигурации батареи улучшают ее характеристики. В случае использования возобновляемых источников энергии указанные выше проблемы повлияют на глубину разряда, срок службы батареи и требования к техническому обслуживанию.Изменения в батарее обычно включают модификацию в одной из трех основных областей:

  • изменения состава и геометрии электродов
  • замена раствора электролита
  • модификации корпуса или клемм аккумуляторной батареи для предотвращения или уменьшения утечки образующегося газообразного водорода.

Залитые свинцово-кислотные батареи характеризуются длительным циклом работы и длительным сроком службы. Однако залитые батареи требуют периодического обслуживания. Необходимо не только регулярно контролировать уровень воды в электролите, измеряя его удельный вес, но эти батареи также требуют «ускоренной зарядки».

Ускоренная зарядка

Ускоренная или выравнивающая зарядка включает в себя кратковременную периодическую перезарядку, при которой выделяется газ и смешивается электролит, предотвращая расслоение электролита в батарее. Кроме того, ускоренная зарядка также помогает поддерживать одинаковую емкость всех аккумуляторов. Например, если одна батарея развивает более высокое внутреннее последовательное сопротивление, чем другие батареи, тогда батарея с более низким SR будет постоянно недозаряжаться во время нормального режима зарядки из-за падения напряжения на последовательном сопротивлении.Однако, если батареи заряжаются более высоким напряжением, это позволяет полностью зарядить все батареи.

Удельный вес (SG)

Залитая батарея подвержена потере воды из электролита из-за выделения водорода и газообразного кислорода. Удельный вес электролита, который можно измерить ареометром, укажет на необходимость добавления воды в батареи, если батареи полностью заряжены. В качестве альтернативы ареометр точно укажет уровень заряда батареи, если известно, что уровень воды правильный.SG периодически измеряется после ускоренной зарядки, чтобы убедиться, что в батарее достаточно воды в электролите. Удельный вес батареи должен быть предоставлен производителем.

Особые рекомендации для гелевых герметичных свинцово-кислотных аккумуляторов

Свинцово-кислотные батареи

в гелеобразном состоянии или AGM (которые обычно герметичны или регулируются с помощью клапана) имеют несколько потенциальных преимуществ:

  • их можно использовать для глубокого цикла с сохранением срока службы батареи
  • ускоренная зарядка не нужна
  • они требуют меньшего обслуживания.

Однако эти батареи обычно требуют более точного режима зарядки и более низкого напряжения. Режим зарядки с более низким напряжением обусловлен использованием свинцово-кальциевых электродов для минимизации выделения газов, но требуется более точный режим зарядки, чтобы минимизировать выделение газов от батареи. Кроме того, эти батареи могут быть более чувствительными к колебаниям температуры, особенно если режим зарядки не компенсирует температуру или не предназначен для этих типов батарей.

Аккумулятор для фотоэлектрической системы будет рассчитан на определенное количество циклов при определенном DOD, режиме зарядки и температуре.Однако батареи могут преждевременно терять емкость или внезапно выходить из строя по разным причинам. Внезапный отказ может быть вызван внутренним коротким замыканием батареи из-за отказа электрического разделителя внутри батареи. Короткое замыкание в батарее снизит напряжение и емкость всего блока батарей, особенно если секции батареи соединены параллельно, а также приведет к другим потенциальным проблемам, таким как перезаряд оставшихся батарей.Батарея также может выйти из строя из-за разрыва цепи (то есть может происходить постепенное увеличение внутреннего последовательного сопротивления), и любые батареи, подключенные последовательно с этой батареей, также будут затронуты. Замораживание аккумулятора, в зависимости от типа используемого свинцово-кислотного аккумулятора, также может вызвать необратимый выход аккумулятора из строя.

Постепенное снижение емкости может усугубляться неправильной эксплуатацией, в частности, ухудшением DOD. Однако работа одной части аккумуляторной батареи в условиях, отличных от другой, также приведет к снижению общей емкости и увеличению вероятности отказа батареи.Батареи могут непреднамеренно эксплуатироваться в разных режимах либо из-за колебаний температуры, либо из-за выхода из строя батареи в одной цепочке батарей, что приводит к неравномерной зарядке и разрядке в цепочке.

Установка

Батареи должны устанавливаться в соответствии с действующим стандартом страны, в которой они устанавливаются. В настоящее время существуют австралийские стандарты AS3011 и AS2676 для установки батарей. Существует также проект стандарта для батарей для приложений RAPS, который в конечном итоге станет австралийским стандартом.

Среди других факторов, которые необходимо учитывать при установке аккумуляторной системы, являются вентиляция, необходимая для конкретного типа аккумуляторной батареи, условия заземления, на которых должна быть размещена аккумуляторная батарея, и меры, принятые для обеспечения безопасности тех, кто может иметь доступ к аккумуляторной батарее. Кроме того, при установке блока батарей необходимо следить за тем, чтобы температура батареи находилась в пределах допустимых условий эксплуатации батареи и чтобы температура батарей в большем блоке батарей была такой же.Батареи в очень холодных условиях могут замерзать при низком уровне заряда, поэтому зимой вероятность того, что батарея будет разряжена, будет более низкой. Чтобы предотвратить это, аккумуляторную батарею можно закопать под землю. Аккумуляторы, регулярно подвергающиеся воздействию высоких рабочих температур, также могут иметь сокращенный срок службы.

Батареи потенциально опасны, и пользователи должны знать о трех основных опасностях: Серная кислота в электролите вызывает коррозию. При работе с батареями важна не только защита ног и глаз, но и защитная одежда.

Батареи обладают способностью генерировать большой ток. Если металлический предмет случайно попадает на клеммы батареи, через этот предмет могут протекать большие токи. При работе с батареями следует свести к минимуму присутствие ненужных металлических предметов (например, украшений), а инструменты должны иметь изолированные ручки.

Опасность взрыва из-за выделения газообразного водорода и кислорода. Во время зарядки, особенно при перезарядке, некоторые батареи, включая большинство батарей, используемых в фотоэлектрических системах, могут выделять потенциально взрывоопасную смесь водорода и кислорода.Чтобы снизить риск взрыва, используется вентиляция для предотвращения скопления этих газов, а потенциальные источники воспламенения (т. Е. Цепи, которые могут генерировать искры или дуги) исключаются из корпуса аккумуляторной батареи.

Аккумуляторы вводят компонент периодического обслуживания в фотоэлектрическую систему. Для всех аккумуляторов, включая «необслуживаемые», требуется график технического обслуживания, который должен обеспечивать:

  • клеммы аккумулятора не корродированы
  • соединения аккумулятора затянуты
  • корпус аккумуляторной батареи не должен иметь трещин и коррозии.

Залитые батареи требуют дополнительного и более частого обслуживания. Для залитых аккумуляторов уровень электролита и удельный вес электролита для каждой батареи необходимо регулярно проверять. Проверка удельного веса аккумулятора с помощью ареометра должна выполняться не менее чем через 15 минут после выравнивания или ускоренного заряда. В аккумуляторы следует добавлять только дистиллированную воду. Водопроводная вода содержит минералы, которые могут повредить электроды батареи.

Свинец в свинцово-кислотных аккумуляторах представляет опасность для окружающей среды, если он не утилизируется надлежащим образом.Свинцово-кислотные батареи следует утилизировать, чтобы можно было восстановить свинец без ущерба для окружающей среды.

Материалы, из которых изготовлены электроды, имеют большое влияние на химический состав батареи и, следовательно, влияют на напряжение батареи и ее характеристики зарядки и разрядки. Геометрия электрода определяет внутреннее последовательное сопротивление, а также скорость зарядки и разрядки.

Основными материалами анода и катода в свинцово-кислотной батарее являются свинец и диксоди свинца (PbO2).Свинцовый электрод выполнен в виде губчатого свинца. Губчатый свинец желателен, поскольку он очень пористый, и поэтому площадь поверхности между свинцом и электролитом серной кислоты очень велика. Добавление небольших количеств других элементов в свинцовый электрод для образования сплавов свинца может уменьшить некоторые недостатки, связанные со свинцом. Основными типами используемых электродов являются свинец / сурьма (с использованием нескольких процентов сурьмы), сплавы свинец / кальций и сплавы свинец / сурьма / кальций.

Аккумуляторы из свинцового сплава с сурьмой имеют несколько преимуществ перед электродами из чистого свинца.К этим преимуществам относятся: более низкая стоимость свинца / сурьмы; повышенная прочность свинцово-сурьмянистого электрода; и возможность получить глубокую разрядку в течение короткого периода времени. Однако сплавы свинец / сурьма склонны к сульфатированию, и их не следует оставлять при низком уровне заряда в течение длительных периодов времени. Кроме того, сплавы свинец / сурьма увеличивают выделение газа в батарее во время зарядки, что приводит к значительным потерям воды. Поскольку в эти батареи необходимо добавлять воду, они требуют более серьезного обслуживания.Кроме того, свинцово-сурьмянистые батареи отличаются высокой скоростью разряда и коротким сроком службы. Эти проблемы (xx — проверьте, вызваны ли обе проблемы металлизацией)) вызваны растворением сурьмы с одного электрода и ее осаждением или осаждением на другом электроде. (xx повышенная адгезия PbO2 xx)

Свинцово-кальциевые батареи — это технология со средней стоимостью. Как и сурьма, кальций также увеличивает прочность свинца отрицательного электрода, но, в отличие от сурьмы, добавление кальция снижает выделение газа в батарее, а также снижает скорость саморазряда.Однако свинцово-кальциевые батареи не следует сильно разряжать. Следовательно, эти типы аккумуляторов можно считать «необслуживаемыми», но это только аккумуляторы с малым циклом заряда.

Добавление сурьмы, а также кальция в электроды дает некоторые преимущества как сурьмы, так и свинца, но при более высокой стоимости. Батареи глубокого разряда, подобные этим, также могут иметь длительный срок службы. Кроме того, к электродам могут быть добавлены следовые количества других материалов, чтобы повысить производительность батареи.

Помимо материала, из которого изготовлены электродные пластины, физическая конфигурация электродов также влияет на скорость зарядки и разрядки, а также на срок службы. Тонкие пластины обеспечивают более быструю зарядку и разрядку, но они менее прочные и более склонны к отслаиванию материала с пластин. Поскольку высокие зарядные или разрядные токи обычно не являются обязательной характеристикой аккумуляторов для систем возобновляемой энергии, можно использовать более толстые пластины, которые имеют меньшее время зарядки и разрядки, но также имеют более длительный срок службы.

В открытой залитой аккумуляторной батарее любой образующийся газ может улетучиваться в атмосферу, вызывая проблемы как безопасности, так и технического обслуживания. Герметичный свинцово-кислотный (SLA), свинцово-кислотный (VRLA) с регулируемым клапаном или рекомбинированный свинцово-кислотный аккумулятор предотвращает потерю воды из электролита, предотвращая или сводя к минимуму утечку газообразного водорода из аккумулятора. В герметичной свинцово-кислотной батарее (SLA) водород не улетучивается в атмосферу, а скорее перемещается или мигрирует к другому электроду, где он рекомбинирует (возможно, с помощью процесса каталитического преобразования) с образованием воды.Эти батареи не являются полностью герметичными, а имеют вентиляционное отверстие, предотвращающее накопление избыточного давления в батарее. Герметичные батареи требуют строгого контроля заряда, чтобы предотвратить накопление водорода быстрее, чем он может рекомбинировать, но они требуют меньше обслуживания, чем открытые батареи.

Свинцово-кислотные батареи с клапанным регулированием (VRLA) по своей концепции аналогичны герметичным свинцово-кислотным (SLA) аккумуляторным батареям, за исключением того, что клапаны должны выделять водород почти полностью.Батареи SLA или VRLA обычно имеют дополнительные конструктивные особенности, такие как использование гелеобразных электролитов и использование свинцово-кальциевых пластин для сведения к минимуму выделения газообразного водорода.

Несмотря на разнообразие типов батарей и областей применения, особенно важными характеристиками фотоэлектрических систем являются требования к обслуживанию батареи и способность глубоко заряжать батарею при сохранении длительного срока службы. Для обеспечения длительного срока службы при глубоком разряде батареи глубокого разряда могут быть либо открытого типа, с избытком электролитического раствора и толстыми пластинами, либо иммобилизованного электролитического типа.Герметичные гелевые батареи могут быть классифицированы как батареи глубокого разряда, но они обычно выдерживают меньшее количество циклов и меньшие разряды, чем специально разработанные батареи с заливной пластиной или батареи AGM. В аккумуляторах с мелким циклом обычно используются более тонкие пластины из свинцово-кальциевых сплавов, и обычно глубина разряда не превышает 25%.

Батареи для фотоэлектрических или удаленных источников питания (RAPS)

Строгие требования к батареям, используемым в фотоэлектрических системах, побудили нескольких производителей изготавливать батареи, специально предназначенные для фотоэлектрических или других удаленных систем питания.В автономных фотоэлектрических системах чаще всего используются батареи свинцово-кислотного типа с глубоким циклом или необслуживаемые батареи с меньшим циклом. Батареи глубокого цикла могут быть батареями с открытым заливом (которые не требуют обслуживания) или батареями AGM с невыпадающим электролитом, которые не требуют обслуживания (но которые требуют осторожности при выборе регулятора). Специальные необслуживаемые батареи с малым циклом работы, которые выдерживают нечастую разрядку, также могут использоваться в фотоэлектрических системах, и при условии, что аккумуляторная батарея спроектирована надлежащим образом, никогда не требуется DOD более 25%.Аккумулятор с длительным сроком службы в правильно спроектированной фотоэлектрической системе при правильном обслуживании может прослужить до 15 лет, но использование батарей, которые не предназначены для длительного срока службы, или условий в фотоэлектрической системе, или являются частью плохой конструкции системы может привести к выходу из строя аккумуляторного блока всего через несколько лет.

Доступны несколько других типов батарей специального назначения, они описаны ниже.

Пусковые, осветительные батареи зажигания (SLI). Эти аккумуляторы используются в автомобилях и отличаются высокой скоростью разряда и заряда.Чаще всего используются электродные пластины, упрочненные либо свинцово-сурьмяной в затопленной конфигурации, либо свинцово-кальциевой в герметичной конфигурации. Эти батареи имеют хороший срок службы в условиях малого цикла, но имеют очень низкий срок службы в условиях глубокого цикла. Батареи SLI не следует использовать в фотоэлектрической системе, поскольку их характеристики не оптимизированы для использования в системе возобновляемых источников энергии, поскольку срок службы фотоэлектрической системы очень мал.

Тяговые или тяговые аккумуляторные батареи. Тяговые или двигательные батареи используются для обеспечения электроэнергией небольших транспортных средств, таких как тележки для гольфа.По сравнению с батареями SLI, они обладают большей способностью выдерживать глубокий цикл при сохранении длительного срока службы. Хотя эта особенность делает их более подходящими для фотоэлектрической системы, чем та, которая использует батареи SLI, двигательные батареи не должны использоваться в каких-либо фотоэлектрических системах, поскольку их скорость саморазряда очень высока из-за использования свинцово-сурьмяных электродов. Высокая скорость саморазряда фактически приведет к большим потерям мощности в батарее и сделает общую фотоэлектрическую систему неэффективной, если батареи не будут испытывать большой DOD на ежедневной основе.Способность этих аккумуляторов выдерживать глубокую цикличность также намного ниже, чем у настоящих аккумуляторов глубокого цикла. Поэтому эти батареи не подходят для фотоэлектрических систем.

Жилые или морские батареи. Эти батареи обычно представляют собой компромисс между батареями SLI, тяговыми батареями и настоящими батареями глубокого цикла. Хотя они и не рекомендуются, в некоторых небольших фотоэлектрических системах используются двигательные и морские батареи. Срок службы таких батарей будет ограничен в лучшем случае несколькими годами, так что экономия на замене батарей означает, что такие батареи, как правило, не являются долгосрочным рентабельным вариантом.

Стационарные аккумуляторы. Стационарные батареи часто используются для аварийного питания или источников бесперебойного питания. Это батареи мелкого цикла, предназначенные для того, чтобы оставаться почти полностью заряженными в течение большей части своего срока службы с лишь редкими глубокими разрядами. Их можно использовать в фотоэлектрических системах, если размер аккумуляторной батареи не должен опускаться ниже DOD от 10% до 25%.

Батареи глубокого разряда. Батареи глубокого разряда должны обеспечивать срок службы в несколько тысяч циклов при высокой глубине разряда (80% или более).Значительные различия в характеристиках цикла могут наблюдаться с двумя типами батарей глубокого разряда, поэтому следует сравнивать срок службы и степень разряда различных батарей глубокого разряда.

Свинцово-кислотный аккумулятор состоит из электродов из оксида свинца и свинца, погруженных в раствор слабой серной кислоты. Возможные проблемы со свинцово-кислотными аккумуляторами включают:

Газообразование: выделение водорода и кислорода. Выделение аккумулятора газом приводит к проблемам с безопасностью и потере воды из электролита.Потеря воды увеличивает требования к обслуживанию батареи, поскольку воду необходимо периодически проверять и заменять.

Повреждение электродов. Вывод отрицательного электрода мягкий и легко повреждается, особенно в тех случаях, когда аккумулятор может постоянно или сильно двигаться.

Расслоение электролита. Серная кислота — тяжелая вязкая жидкость. По мере разряда батареи концентрация серной кислоты в электролите снижается, а во время зарядки концентрат серной кислоты увеличивается.Это циклическое изменение концентрации серной кислоты может привести к расслоению электролита, при котором более тяжелая серная кислота остается на дне батареи, а менее концентрированный раствор, вода, остается наверху. Непосредственная близость электродных пластин внутри батареи означает, что при физическом встряхивании серная кислота и вода не смешиваются. Однако контролируемое выделение газа электролита способствует смешиванию воды и серной кислоты, но его необходимо тщательно контролировать, чтобы избежать проблем безопасности и потери воды.В большинстве свинцово-кислотных аккумуляторов требуется периодическая, но нечастая подача газа в аккумулятор для предотвращения или обращения вспять расслоения электролита в процессе, называемом «ускоренной» зарядкой.

Сульфатирование аккумулятора. При низком уровне заряда на свинцовом электроде могут расти крупные кристаллы сульфата свинца, в отличие от мелкозернистого материала, который обычно образуется на электродах. Сульфат свинца — изоляционный материал.

Разлив серной кислоты. Если серная кислота вытечет из батарейного отсека, это представляет серьезную угрозу безопасности.Желирование или иммобилизация жидкой серной кислоты снижает вероятность разливов серной кислоты.

Зависание АКБ при низком уровне разряда. Если аккумулятор находится на низком уровне разряда после превращения всего электролита в воду, точка замерзания электролита также падает.

Потеря активного материала электродов. Потеря активного материала электродов может происходить в результате нескольких процессов. Одним из процессов, который может вызвать необратимую потерю емкости, является отслаивание активного материала из-за изменений объема между xxx и сульфатом свинца.Кроме того, xxx. Неправильные условия зарядки и выделение газа могут вызвать отслоение активного материала от электродов, что приведет к необратимой потере емкости.

В зависимости от того, какая из вышеперечисленных проблем является наиболее важной для конкретного приложения, соответствующие модификации базовой конфигурации батареи улучшают ее характеристики. В случае использования возобновляемых источников энергии указанные выше проблемы повлияют на глубину разряда, срок службы батареи и требования к техническому обслуживанию.Изменения в батарее обычно включают модификацию в одной из трех основных областей:

  • изменения состава и геометрии электродов
  • замена раствора электролита
  • модификации корпуса или клемм аккумуляторной батареи для предотвращения или уменьшения утечки образующегося газообразного водорода.

Коррозия состоит из областей набора или восстановления / окисления, в которых обе реакции происходят на одном и том же электроде. Для аккумуляторной системы коррозия приводит к нескольким пагубным последствиям.Один из эффектов заключается в том, что он превращает металлический электрод в оксид металла.

Все химические реакции протекают как в прямом, так и в обратном направлении. Чтобы обратная реакция протекала, реагенты должны набирать достаточно энергии, чтобы преодолеть электрохимическую разницу между реагентами и продуктами, а также перенапряжение. Обычно в аккумуляторных системах вероятность возникновения обратной реакции мала, так как имеется несколько молекул с достаточно большой энергией. Однако некоторые частицы, хотя и маленькие, обладают достаточной энергией.В заряженной батарее существует процесс, с помощью которого батарея может быть разряжена даже при отсутствии нагрузки, подключенной к батарее. Количество разряжаемого аккумулятора при стоянии называется саморазрядом. Саморазряд увеличивается с увеличением температуры, потому что у большей части продуктов будет достаточно энергии для протекания реакции в обратном направлении.

Идеальный набор химических реакций для батареи — это тот, в котором существует большой химический потенциал, который высвобождает большое количество электронов, имеет низкое перенапряжение, спонтанно протекает только в одном направлении и является единственной химической реакцией, которая может произойти.Однако на практике есть несколько эффектов, которые ухудшают характеристики батареи из-за нежелательных химических реакций, таких как изменение фазы объема реагентов или продуктов, а также физическое движение реагентов и продуктов внутри батареи.

В процессе химических реакций многие материалы претерпевают изменение либо в фазе, либо, если они остаются в одной и той же фазе, объем и плотность материала могут быть изменены в результате химической реакции. Наконец, материалы, используемые в батарее, в первую очередь анод и катод, могут изменить свою кристалличность или структуру поверхности, что, в свою очередь, повлияет на реакции в батарее.Многие компоненты в окислительно-восстановительных реакциях претерпевают изменение фазы во время окисления или восстановления. Например, в свинцово-кислотной батарее сульфат-ионы меняются с твердой формы (в виде сульфата свинца) на раствор (в виде серной кислоты). Если сульфат свинца перекристаллизовывается где-нибудь, кроме анода или катода, то этот материал теряется для аккумуляторной системы. Во время зарядки только материалы, соединенные с анодом и катодом, могут участвовать в электронном обмене, и поэтому, если материал не касается анода или катода, он больше не может заряжаться.Образование газовой фазы в батарее также представляет особые проблемы. Прежде всего, газовая фаза обычно имеет больший объем, чем исходные реагенты, что вызывает изменение давления в батарее. Во-вторых, если предполагаемые продукты находятся в газовом переходе, они должны быть ограничены анодом и катодом, иначе они не смогут заряжаться.

Изменение громкости также обычно отрицательно сказывается на работе от батареи.

В стандартной свинцово-кислотной батарее с залитой водой электроды погружены в жидкую серную кислоту.Несколько модификаций электролита используются для улучшения характеристик батареи в одной из нескольких областей. Ключевыми параметрами электролита, которые контролируют производительность батареи, являются объем и концентрация электролита, а также образование «пленочного» электролита.

Изменения объема электролита можно использовать для повышения надежности батареи. Увеличение объема электролита делает батарею менее чувствительной к потерям воды и, следовательно, делает регулярное техническое обслуживание менее критичным.Увеличение объема батареи также увеличит ее вес и снизит удельную энергию батареи.

В батареях с «плененным» электролитом серная кислота иммобилизуется либо путем «гелеобразования» серной кислоты, либо с помощью «абсорбирующего стеклянного мата». Оба имеют меньшее выделение газа по сравнению с затопленными свинцово-кислотными аккумуляторами и, следовательно, часто встречаются в герметичных свинцово-кислотных аккумуляторах, не требующих обслуживания.

Желирование. В «гелеобразной» свинцово-кислотной батарее электролит может быть иммобилизован путем гелеобразования серной кислоты с использованием силикагеля.Загустевший электролит имеет преимущество в том, что снижается газообразование, и, следовательно, батареи не требуют особого обслуживания. Кроме того, расслоение электролита не происходит с гелевыми батареями, и поэтому ускоренная зарядка не требуется, а поскольку электролит загустевает, вероятность просыпания серной кислоты также снижается. Однако для того, чтобы еще больше снизить газообразование, в этих «гелевых» аккумуляторах также обычно используются свинцово-кальциевые пластины, что делает их непригодными для применения в условиях глубокого разряда.Еще один недостаток состоит в том, что условия зарядки гелеобразной свинцово-кислотной батареи необходимо более тщательно контролировать, чтобы предотвратить перезаряд и повреждение батареи.

Абсорбирующее матирование стекла. Вторая технология, которая может быть использована для иммобилизации серной кислоты, — это «абсорбирующий стеклянный мат» или аккумуляторы AGM. В аккумуляторе AGM серная кислота поглощается матом из стекловолокна, который помещается между пластинами электродов. Аккумуляторы AGM обладают многочисленными преимуществами, включая способность глубоко разряжаться без ущерба для срока службы, обеспечивая высокую скорость заряда / разряда и расширенный температурный диапазон для работы.Ключевым недостатком этих аккумуляторов является необходимость более тщательно контролируемых режимов зарядки и более высокая начальная стоимость.

Пять способов продлить срок службы свинцово-кислотной батареи. Часть I [Victron Energy]

Хотя высококачественные батареи изначально дороже, они также более надежны, а их более длительный срок службы позволяет окупить вложения в долгосрочной перспективе.

Их продолжительность напрямую зависит от того, как их используют… или злоупотребляют. Простое знание того, что вы должны и чего не должны делать с батареей, сэкономит вам тысячи — если ваш аккумулятор большой. Давайте подробнее рассмотрим батареи и пять простых способов продлить их жизнь …

В этой статье мы рассмотрим основные причины преждевременного выхода батареи из строя, а именно:

  1. Разрядился аккумулятор… затем не удалось подзарядить

  2. Постоянная недозарядка

  3. Перегрузка

  4. Слишком быстрая зарядка

  5. Игнорирование температурных соображений

Эта статья посвящена свинцовым батареям.Есть также много других типов батарей, таких как литиевые, но эта информация касается конкретно свинца.

Чтобы понять, что происходит внутри батареи, нам нужно знать, как она устроена, и что происходит, когда мы ее разряжаем и перезаряжаем.

Ячейка свинцово-кислотной батареи составляет примерно 2 В. Таким образом, батарея 12 В состоит из шести ячеек, каждая из которых состоит из двух свинцовых пластин, погруженных в разбавленную серную кислоту (электролит), которая может быть либо жидкостью, либо гелем.Оксид свинца не твердая, а губчатая и должна поддерживаться сеткой. Пористость свинца в этом состоянии делает его полностью доступным для электролита, позволяя относительно легко протекать химической реакции по всей толщине пластины, поскольку батарея выполняет свою задачу по хранению и высвобождению энергии.

Эта химическая реакция довольно сложна, но нам нужно отметить лишь пару моментов: когда энергия потребляется от батареи, серная кислота теряется из электролита и соединяется со свинцовыми пластинами с образованием сульфата свинца.И наоборот — перезарядка батареи заставляет сульфат покинуть свинцовые пластины и снова вернуться к электролиту, образуя разбавленную серную кислоту. Второе, что нам нужно заметить, это то, что если зарядное напряжение слишком высокое или поддерживается слишком долго, начинается серьезная другая химическая реакция: вода в электролите разлагается на кислород и водород.

Разложение воды в электролите на кислород и газообразный водород (электролиз) является нормальным явлением на заключительных этапах зарядки аккумулятора, но обычно весьма ограничено.Батареи с влажными элементами требуют периодического доливания (деионизированной) воды для замены жидкости, которая была потеряна с течением времени. Батареи, не требующие особого обслуживания, не нуждаются в дозаправке — фактически, их нельзя доливать, потому что они герметичны. Герметизация батареи предотвращает утечку газов водорода и кислорода; вместо этого они рекомбинируют под давлением, газы улавливаются и повторно абсорбируются во время цикла разряда. Однако такие батареи снабжены клапаном сброса давления на случай переизбытка газа, вызванного зарядкой при слишком высоком напряжении.Позже мы посмотрим на напряжение заряда.

Циклическое движение сульфата между свинцовыми пластинами и электролитом, вызванное движением электронов, звучит довольно просто — так что же может пойти не так? В основном три вещи:

Губчатые свинцовые пластины могут быть покрыты твердым слоем кристаллов сульфата свинца, который препятствует доступу к пластинам. Это состояние называется сульфатацией — в конечном итоге оно закрывает доступ к емкости аккумулятора.Связная структура свинца разрушается, и часть свинца отваливается — такое разрушение пластин известно как «осыпание».
Электролит — жидкость или гель — разлагается и теряется в виде газа. Электролит является агентом химической реакции — когда он сильно снижен или отсутствует, батарея не может работать.

Это основные болезни, которые вызывают либо неприемлемую потерю емкости батареи, либо вообще неспособность сохранять или высвобождать энергию. Есть и другие.

Что еще хуже, функциональные ограничения, вызванные любым из этих разрушительных событий, часто вызывают второй или третий режим отказа.

Есть несколько способов уничтожить даже совершенно новую батарею за неделю или меньше — и это те, которые мы рассмотрим в первую очередь … но прежде чем мы это сделаем, давайте установим несколько общих правил использования нашей батареи, не вызывая ее ущерб, сокращающий жизнь.

Выбирая размер (емкость) аккумулятора для нашей работы, помните, что он прослужит дольше всего, если он никогда не будет разряжен более чем на половину своей емкости… другими словами, он никогда не разряжается ниже 50% уровня заряда (SOC).

Частично разряженные батареи необходимо как можно скорее зарядить. Повреждение вызвано оставлением их в частично заряженном состоянии… чем ниже заряд; и чем дольше аккумулятор остается в разряженном состоянии, тем больше повреждения.

Безопасно переключать батарею между 50% SOC и 80% SOC — это тоже довольно эффективно. Но такая езда на велосипеде не может продолжаться длительное время. Перезарядка разряженного аккумулятора до уровня заряда примерно 80% может быть достигнута быстро, но возврат аккумулятора к 100% SOC занимает гораздо больше времени, потому что скорость, с которой он может принимать заряд, очень сильно снижается по мере приближения к полной зарядке.Важно обеспечить необходимое время для зарядки, чтобы вернуть батарею к 100% SOC не реже одного раза в 30 циклов — это ежемесячно для батареи, которая используется каждый день. Для этого есть несколько причин, о которых мы поговорим чуть позже.

Изображение батареи в разрезе принадлежит Sun.solanki и использовалось без изменений.

На следующей неделе мы посмотрим, что происходит, когда аккумулятор слишком сильно разряжается… и затем остается в разряженном состоянии.

Пожалуйста, подпишитесь на эту страницу, чтобы получать уведомление, когда она будет опубликована.

Джастин Тайерс

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Слишком глубокая разрядка и оставление аккумулятора «разряженным»

Худшее обращение с аккумулятором (кроме получения опасно высокого зарядного напряжения) — это полностью разряжать аккумулятор и хранить его без подзарядки.

Что происходит, когда батарея глубоко разряжена — особенно ниже 20% SOC — пластина механически повреждается из-за обширного образования кристаллов серы, которые подрывают сцепление материала. Часть материала разрыхляется и начинает отпадать. Этот процесс деградации будет происходить в любом случае по мере старения батареи, но глубокая разрядка батареи значительно ускоряет этот процесс.

Вот и все, что касается слишком глубокой разрядки: если затем оставить аккумулятор в разряженном состоянии, то образовавшиеся крошечные кристаллы сульфата начинают расти.Сульфат на поверхности пластин начинает затвердевать — в конечном итоге образуя непроницаемое твердое белое покрытие вокруг свинцовой пластины, которое закупоривает пористость материала — и значительно препятствует диффузии ионов, управляющих химическим процессом. На этом этапе емкость батареи и ее способность принимать или отдавать энергию будут настолько медленными, что она не сможет выполнять ту работу, для которой была выбрана.

Такое повреждение аккумулятора происходит, например, когда фары автомобиля были оставлены включенными и автомобиль не использовался в течение нескольких дней или недель … или если аккумулятор был оставлен на полке в мастерской в ​​течение нескольких месяцев, и он саморазрядился, пока не станет плоским.Почти несомненно, что в обоих случаях аккумулятор придется утилизировать.

Если какое-либо повреждение является обратимым, его можно устранить, перезарядив аккумулятор обычным способом (это может быть медленным, если он будет заряжаться), а затем применяя выравнивающий заряд, пока напряжение аккумулятора не достигнет 16 В или 17 В (для аккумулятора 12 В ) в течение, скажем, трех часов. Это заставит сульфатированные участки пластины высвободить сульфат обратно в электролит. Успех не гарантируется, и почти во всех случаях будет некоторая необратимая потеря мощности.

Будьте очень осторожны, внимательно следите за аккумулятором при этих высоких напряжениях заряда, так как это также приведет к разделению электролита на газ.

Слишком быстрая зарядка аккумулятора

Батарею следует заряжать током не более 20% от ее емкости. Например, если батарея рассчитана на 100 ампер / час, ее максимальный зарядный ток не должен превышать 20 ампер. Разряженный аккумулятор способен выдерживать гораздо более высокие уровни заряда — в течение короткого времени, — но этого вида зарядки следует избегать.Например, генераторы с высокой выходной мощностью обещают очень эффективную и быструю перезарядку аккумуляторов, но высокие токи заряда нарушают сцепление свинцовых пластин, что приводит к отслаиванию материала пластин и ускорению старения.

Сначала это «только» снижает емкость батареи — позже, когда потерянный материал накапливается в нижней части батареи, он в конечном итоге коснется как положительной, так и отрицательной пластины, создавая короткое замыкание, и элемент перестанет работать. Батарея потеряет напряжение от этой ячейки (отказ других ячеек не будет далеко позади).

Слишком быстрая зарядка аккумулятора усугубляет то, что быстрая зарядка увеличивает температуру аккумулятора. Контролируемый цикл заряда для конкретной батареи — напряжения, при которых она заряжается во время каждой из трех фаз заряда — были рассчитаны с предположением, что температура батареи составляет 20ºC (обычно), при более высоких температурах напряжения заряда должны быть уменьшены. Неспособность снизить зарядные напряжения приводит к большему повреждению сцепления свинцовой пластины и выделению электролита (электролиз), что быстро снижает количество электролита в батарее с влажными элементами.В герметичных батареях проблема еще хуже: клапаны давления будут выпускать газ, чтобы избежать разрушения корпуса батареи, и потерянный электролит не может быть заменен.

Стоит отметить, что не все батареи одинаковы, и что некоторые из них, например, спиральные батареи, лучше других выдерживают эффект быстрой зарядки.

Повторяющаяся неспособность полностью зарядить аккумулятор

Большинство из нас следят за состоянием заряда батареи с помощью грубого и готового метода «наблюдения за напряжением батареи».Например, в представленной выше установке с быстрой зарядкой напряжение нарастает так быстро, что создается иллюзия, что наша батарея полностью заряжена, и поэтому мы можем завершить цикл зарядки, полагая, что работа почти завершена. Хотя батареи, заряжаемые и разряженные таким образом, на самом деле более «эффективны» (в том смысле, что большая часть энергии, передаваемой батарее, поглощается батареей), короткие резкие циклы зарядки приводят к постоянной недозарядке. Повторяющаяся недозарядка вызывает три проблемы:

Недозаряженная пластина батареи не вернула все сульфаты в электролит.Как было замечено ранее, кристаллы сульфата, оставленные на некоторое время, начинают формировать твердое покрытие — сульфатирование. Мы уже упоминали, что это покрытие снижает емкость аккумулятора, но оно также приводит к более высокому сопротивлению зарядке, требуя гораздо более длительного времени зарядки … что, в свою очередь, увеличивает вероятность недозарядки, что приводит к дальнейшей сульфатации. Мы должны разорвать этот круг ухудшения.

Расслоение электролита — это состояние, о котором мы еще не упомянули — оно возникает, когда электролит остается статическим и «несмешанным» в течение длительного периода.Кислота, будучи более плотной, чем вода, падает на дно электролита и остается там, если электролит каким-либо образом не перемешивается. Это волнение может быть, когда транспортное средство или лодка, в которых установлена ​​батарея, начинает двигаться или катиться. В статической установке электролит перемешивается только тогда, когда во время перезарядки достигается напряжение выделения газа, и пузырьки газа, поднимающиеся через электролит, тщательно перемешивают его. Стратифицированный электролит слабее вверху и сильнее внизу, в результате чего большая часть химической реакции происходит внизу на свинцовых пластинах.В этом случае нижняя часть пластин выполняет всю работу, в то время как верхняя часть пластин находится в отпуске, так что пластина будет стареть быстрее, чем если бы работа распределялась более равномерно.

Наконец, мы упомянули, что батарея на 12 В состоит из шести ячеек. Эти элементы никогда не бывают полностью идентичными — некоторые будут иметь меньшую емкость, некоторые будут заряжаться медленнее. Важно убедиться, что все ячейки периодически достигают полной перезарядки, чтобы они находились в гармонии друг с другом — в противном случае ячейки, которые были немного хуже по производительности, постепенно ухудшаются: их емкость снижается, а скорость снижается. которые они могут перезаряжаться, становится медленнее, и они начинают все больше и больше отставать в производительности по сравнению с другими ячейками.Этот процесс приведения клеток в гармонию называется выравниванием.

Перезарядка:

Перезарядка часто происходит, когда аккумулятор «хранится», но все еще подключен к зарядному устройству. Не в состоянии принимать больше энергии, вода в электролите разлагается на водород и кислород. Уровень электролита упадет ниже уровня пластин, что приведет к непоправимому повреждению этой части пластины — и в конечном итоге батарея полностью высохнет.

Вместо того, чтобы оставлять аккумулятор на постоянной подзарядке во время хранения, лучше оставить его разомкнутым и заряжать каждую неделю или две, чтобы восполнить потерю энергии из-за саморазряда.

Температура

Каждый тип батареи — глубокий цикл / стартер / мокрый элемент / гелевый / спиральный элемент / AGM / регулируемый с помощью клапана — имеет немного разные требования к зарядке или «алгоритм заряда». Эти алгоритмы заряда определяют напряжение, которое должно быть достигнуто перед переходом в новую фазу заряда. Отклонение от этих предустановленных пределов — даже на несколько процентов — оказывает драматическое влияние на то, завершит ли аккумулятор цикл зарядки чрезмерно или недостаточно. И, как мы обсуждали выше, как недостаточная, так и чрезмерная зарядка ускоряют процесс старения или сокращают срок службы батареи.

Чтобы установить алгоритм зарядки аккумулятора, необходимо предположить, что аккумулятор будет иметь стандартную температуру окружающей среды, а стандарт обычно составляет 20 ° C. Но, конечно, такая температура часто неуместна — батареи, используемые в тропиках или полярных регионах, будут храниться при температурах, сильно отличающихся от предполагаемых стандартов; батареи, установленные в горячих машинных отделениях, часто имеют температуру 50 ° C; и температура быстро заряжаемых аккумуляторов также резко возрастет по сравнению с температурой окружающей среды.

Важно, чтобы устройство зарядки аккумулятора имело способность определять температуру аккумулятора и применяло температурную компенсацию к его зарядному напряжению. Например, батарея, температура которой составляет 30 ° C в начале цикла зарядки, может повыситься еще на 10 ° C во время зарядки. Напряжение заряда этой батареи следует уменьшить на 0,5 В, чтобы избежать повреждения батареи, особенно батарей, которые особенно уязвимы для высоких зарядных напряжений, таких как гель или абсорбирующий стеклянный мат.

Еще одна вещь — при более высоких температурах батареи испытывают ускоренное химическое разложение — каждые 10 ° C повышения температуры выше предполагаемой рабочей температуры вдвое сокращают ожидаемый срок службы батареи.

Итого:

Выбирая аккумулятор, убедитесь, что он подходит для работы, которую он должен выполнять… запуск двигателя или глубокий цикл; резервное питание или скачок напряжения.
Убедитесь, что аккумуляторная батарея имеет достаточную емкость, чтобы легко выполнять свою задачу.На практике для долгого срока службы это означает указание емкости, примерно в четыре раза превышающей требуемую.
Убедитесь, что рабочие циклы батареи включают период, когда батареи могут быть медленно доведены до состояния 100% заряда, и допустимое время сверх этого времени, чтобы элементы могли выровняться. Это должно быть не реже одного раза в 30 циклов.
Установка устройства автоматического отключения нагрузки, чтобы предотвратить разряд батареи ниже уровня, скажем, 20% SOC, может быть лучшим вложением, которое вы можете сделать.
Сульфатирование: свинец и диоксид свинца реагируют с серной кислотой с образованием сульфата свинца — небольших кристаллов, которые легко превращаются обратно в свинец, диоксид свинца и серную кислоту.Со временем часть сульфата свинца не восстанавливается, а образует стабильное кристаллическое покрытие, которое больше не растворяется при перезарядке. Сульфатирование можно уменьшить, если аккумулятор полностью зарядить после цикла разрядки. Сульфатированные батареи содержат меньше свинца, меньше серной кислоты, блокируют поглощение электронов, что приводит к снижению емкости батареи, и могут обеспечивать только часть своего нормального тока разряда. Лучший способ предотвратить это — периодически полностью заряжать аккумулятор.

Изображение раздутой батареи принадлежит Деннису ван Зуйлекому и воспроизведено без изменений.

Джастин Тайерс

Образование | Schumacher Electric

Определение уровня заряда

State of Charge сообщает нам, достаточно ли заряжен аккумулятор для проведения нагрузочного тестирования. Это не говорит нам, может ли батарея обеспечивать одновременно напряжение и ток. Вот для чего нужен нагрузочный тест. Как только будет определено, что уровень заряда аккумулятора составляет 75% или больше, тест под нагрузкой измеряет способность аккумулятора обеспечивать ПИТАНИЕ.Мощность измеряется в ваттах или в вольтах, умноженных на амперы.

По мере старения и износа аккумуляторов материал звонка ухудшается или отваливается, а пластины становятся менее мощными. Аккумулятор, прошедший испытания на удельный вес или напряжение холостого хода, может все еще испытывать трудности с поддержанием своего напряжения, когда электрические нагрузки потребляют большое количество тока.

Это очень важно, поэтому мы повторим: батареи должны обеспечивать питание. Они должны обеспечивать достаточный электрический ток для работы всех нагрузок транспортного средства и при этом поддерживать правильное напряжение.

Что такое нагрузочный тест?

Нагрузочный тест — это именно то, что следует из названия! Измеренная электрическая нагрузка прикладывается к батарее в течение определенного времени с помощью устройства, называемого тестером нагрузки.

Тестеры нагрузки

Тестер нагрузки обычно называют вольт-амперным тестером, или сокращенно НДС. Его основные компоненты включают:

  • Вольтметр, подключенный к клеммам аккумулятора с помощью больших кабелей и зажимов.
  • Амперметр, подключенный вокруг основных кабелей НДС с помощью индуктивных токовых клещей, также называемый пробником ампер.
  • Регулируемый углеродный ворс внутри измерителя нагрузки, создающий электрическую нагрузку. Величина нагрузки, прикладываемой к батарее, регулируется ручкой на передней панели тестера нагрузки.

Что такое нагрузка?

A Нагрузка — это любой потребитель электроэнергии. Во время нормальной работы автомобиля многие типы нагрузок потребляют электроэнергию. Примеры нагрузок включают: стартер, фары, систему зажигания, топливный насос, предметы комфорта и удобства, а также вентилятор отопителя. Даже автомобильный компьютер — это нагрузка.

Выполнение нагрузочного теста — Часть первая

  • Перед выполнением нагрузочного теста убедитесь, что аккумулятор заряжен на 75% или выше.
  • Подключите тестер нагрузки к батарее и зажмите зонд усилителя вокруг любого из кабелей батареи.

Выполнение нагрузочного теста — часть вторая

  • Поверните ручку на тестере нагрузки, чтобы приложить нагрузку, равную: 1/2 номинального тока холодного пуска (CCA) батареи.
  • Приложите нагрузку ровно на 15 секунд.Ровно через 15 секунд отметьте напряжение аккумулятора и выключите нагрузку.
  • Батарея, имеющая комнатную температуру, должна иметь 9,6 В на своих выводах в конце 15-секундного теста нагрузки. Если в тестере нагрузки есть аналоговый вольтметр, подключите цифровой мультиметр к батарее во время теста, чтобы получить точное показание напряжения батареи. Аналоговый измеритель недостаточно точен.
Важные примечания:

Поверните ручку тестера нагрузки, чтобы как можно быстрее приложить правильную нагрузку. Это гарантирует точные результаты испытаний.Измерьте напряжение батареи ровно через 15 секунд, еще раз, чтобы обеспечить точную оценку батареи. Не применяйте 1/2 рейтинга CA. Используйте только рейтинг CCA.

Оценка нагрузочного теста

Напряжение батареи должно быть не менее 9,6 В в конце 15-секундного теста нагрузки при температуре батареи 70 градусов по Фаренгейту. Немного более низкие значения напряжения являются нормальными при температуре ниже 70 градусов по Фаренгейту.

Обратитесь к таблицам ниже и справа, чтобы внести поправки на минимальное напряжение батареи, когда температура батареи ниже 70 градусов по Фаренгейту.

Батареи, которые почти не выходят из строя при испытании на 75%, могут пройти при полной зарядке. (Например, напряжение аккумулятора упало до 9,4 В.) Зарядите до 100% и повторите проверку.

Батареи, у которых достаточно свободного места при испытании на 75%, имеют резервную емкость выше средней. (Например, напряжение аккумулятора составляет 9,8 В в конце теста нагрузки.)

Если аккумулятор не прошел нагрузочный тест, продолжайте следить за напряжением холостого хода в течение нескольких минут. Если при разомкнутой цепи аккумулятора напряжение возвращается обратно и поднимается выше 12.45 вольт, не обманывайтесь, думая, что это хорошо. Вероятно, он на последнем издыхании.

Температура и относительное пост-напряжение

Температура влияет на производительность во время нагрузочного теста. Компенсируйте изменения температуры батареи следующим образом:

Температура Напряжение нагрузки
70 ° F 9,6 В
60 ° F 9,5 В
50 ° F 9.4В
40 ° F 9,3 В
30 ° F 9,1 В
20 ° F 8,9 В
10 ° F 8,7 В
0 ° F 8,5 В

Обратное напряжение

Вот почему батарея плохая, если она восстанавливается выше 12,45 В после неудачного теста нагрузки: хотя аккумуляторная кислота достаточно сильна, чтобы генерировать высокое напряжение холостого хода, в батарее не осталось достаточно хорошего материала пластины, чтобы обеспечить и то, и другое.

Leave a Reply

Your email address will not be published.Required fields are marked *

*