Описание системы пуска двигателя: Системы пуска двигателя — Моряк

Содержание

Системы пуска двигателя — Моряк

Задача пусковой системы состоит в раскручивании двигателя до оборотов, при которых создаваемые в цилиндрах давление и температуры сжимаемого воздуха будут достаточны для самовоспламенения впрыскиваемого топлива. Раскручивание судовых дизелей осуществляется сжатым воздухом и лишь пуск быстроходных двигателей небольшой мощности производится с помощью электростартера или пусковой турбинки, работающей на сжатом воздухе.

Процесс пуска включает следующие 3 этапа:

  •  интенсивный разгон двигателя в начальный период под действиемдавления пускового воздуха, поступившего в цилиндр, поршень которого находился в пусковом положении;
  •  последующий разгон двигателя под давлением воздуха, поступающегов остальные цилиндры в соответствии с порядком вих работы;
  • переход двигателя на работу на топливе.

Подача пускового воздуха осуществляется в тот цилиндр, поршень которого находится в положении, соответствующем такту расширения.
Обычно это соответствует положению соответствующего колена вала на участке 1-6 град.за ВМТ и до 100-110 град, п.к.в. В этот момент в цилиндр через специальный пусковой клапан поступает сжатый воздух. Под его давлением поршень движется вниз, вращая коленчатый вал. В дальнейшем в период пуска воздух поступает последовательно во все цилиндры в порядке их работы. Особенно тяжелые условия пуска создаются в главных судовых дизелях с прямой передачей на гребной винт, так как энергия пускового воздуха должна преодолеть не только энергию на раскручивание самого двигателя, но и сопротивление вращению гребного винта с присоединенными к нему массами воды.

В системе с пневматически управляемыми пусковыми клапанами (рис.13.1) сжатый воздух подводится от главного пускового (маневрового) клапана 3 по трубе 4 одновременно ко всем пусковым клапанам 5 цилиндров. Однако клапаны пока остаются закрытыми. Когда поршень какого-либо цилиндра находится в пусковом положении к его пусковому клапану от воздухораспределителя 1,  соединенного с главным пусковым клапаном трубопроводом 2, будет подан воздух. Он откроет клапан, и рабочий воздух поступит в цилиндр и, надавив на поршень, приведет вал во вращение.

Пуск сжатым воздухом может производиться как с одновременной подачей топлива в цилиндры (смешанный пуск), так и без нее (раздельный пуск).

Минимальное число цилиндров, при котором обеспечивается пуск из любого положения коленчатого вала, составляет у дизелей: четырехтактных iмин = 6, двухтактных iмин =4.

Устройство пусковой системы
Главный пусковой клапан служит для осуществления многократных пусков при открытых разобщительных клапанах на баллонах пускового воздуха и разгрузки пусковой магистрали после завершения пуска.

Главный пусковой клапан дизеля (рис.13.2) состоит из тарелки 3, вспомогательного разгрузочного клапана 4 и поршня 2 управляющего цилиндра, нагруженного пружиной 1. Воздух из пусковых баллонов поступает в полость Б главного пускового клапана и одновременно через клапан управления пуском на посту управления в полость А управляющего цилиндра. При этом главный пусковой клапан закрыт, а пусковой трубопровод через вспомогательный клапан 4 сообщен с атмосферой. При установке рукоятки на посту управления в положение «Пуск» клапан управления пуском сообщает полость А управляющего цилиндра с атмосферой. Главный пусковой клапан открывается и воздух поступает к пусковым клапанам рабочих цилиндров; клапан 4 разобщает пусковую магистраль с атмосферой.

В аварийных случаях клапан может быть открыт или закрыт с помощью штока с маховиком. Воздухораспреде-литель служит для управления моментами открытия и закрытия пусковых клапанов на цилиндрах в порядке их работы. По конструкции воздухораспределители подразделяются на дисковые, золотниковые и клапанные.

Принцип работы золотникового воздухораспределителя (рис. 13.3). При открытии главного пускового клапана воздух заполняет полость А. За счет разности площадей поясков 2 и 3 золотник прижимается к шайбе 4, имеющей отрицательный профиль. При вращении шайбы и попадании хвостовика золотника во впадину шайбы полость А соединяется с каналом В, ведущим к управляющему цилиндру пускового клапана одного из цилиндров. После закрытия главного пускового клапана золотник с помощью пружины 1 отжимается от шайбы 4. Канал В сообщается с полостью Б, соединенной с атмосферой, и магистраль управляющего воздуха разгружается. При реверсе распределительный валик воздухораспределителя сдвигается в осевом направлении и под хвостовики золотников подводится второй комплект кулачных шайб.

За счет разности площадей поясков 2 и 3 золотник прижимается воздухом к шайбе 4, имеющей отрицательный профиль. При попадании хвостовика золотника во впадину шайбы полость А соединяется с каналом В, ведущим в управляющий цилиндр одного из пусковых клапанов.

После закрытия главного пускового клапана золотник с помощью пружины 1 отжимается от кулачной шайбы; при этом канал В сообщается с полостью Б, соединенной с атмосферой, и магистраль управляющего воздуха разгружается.

Поступающий к воздухораспределителю пусковой воздух давит на все управляющие клапаны 5, сидящие на кулаке 2. В зависимости от положения управляющих клапанов 5 , пусковой клапан под давлением воздуха, поступающего от соответствующего управляющего клапана, открывается в том цилиндре, поршень которого находится в пусковом положении (за ВМТ). Под действием давления воздуха поршень приходит в движение и вращает коленчатый вал.

Кулак 2 также вращается и следующий по порядку работы цилиндров управляющий клапан 5 активируется и подает воздух в следующий цилиндр. При достижении заданных оборотов система ДАУ включает подачу топлива и пусковой режим прекращается. Подача сжатого воздуха в пусковую систему прекращается и она сообщается с атмосферой, управляющие клапаны 5 пружинами поднимаются над кулаками и процесс пуска прекращается.

В двигателях МАН- Бурмейстер и Вайн при реверсе распределительный валик воздухораспределителя смещается, в осевом направлении и под хвостовики золотников подводится второй комплект кулачных шайб, соответствующих заднему ходу.

Пусковые клапаны служат для подачи сжатого воздуха в цилиндры при пуске дизеля. Клапаны открываются воздухом, поступающим к их управляющим поршням от воздухораспределителя.

Пусковой клапан дизеля Бурмейстер и Вайн (рис.13.5, а) состоит из штока 6 с тарелкой 8 и направляющими ребрами 7,  уравновешивающего поршня, 5, пружины 4 и управляющего поршня 3. Масленка 2 и тавотница 1 служат для подачи смазки. Воздух от главного пускового клапана подводится в полость между уравновешивающими поршнем и тарелкой клапана, а от воздухораспределителя – в полость над управляющим поршнем.

Пусковой клапан дизеля Зульцер (рис.13.5,6) состоит из корпуса, штока 6, клапана с тарелкой 7 и уравновешивающим поршнем 5, управляющих поршней 4 я 3 и пружины /. Управляющий поршень 3 выполнен дифференциальным. Управляющий воздух для открытия клапана подается от воздухораспределителя в полость А; одновременно полость под поршнем 4 воздухораспределитель сообщает с атмосферой. Давление управляющего воздуха действует вначале только на меньшую площадь дифференциального поршня 3. Клапан начнет открываться, если давление управляющего воздуха равно или больше давления в цилиндре. Этим предотвращается забрасывание пламени из цилиндра в пусковой трубопровод при применении смешанного пуска, когда в цилиндр подаются одновременно сжатый воздух и топливо.

После небольшого перемещения поршня 3 вниз уплотнительное кольцо малого поршня открывает прорези 2, через которые воздух поступает в полость Б и клапан начинает быстро открываться за счет давления на полную площадь дифференциального поршня.

Для закрытия клапана управляющий воздух из воздухораспределителя подается в полость В; одновременно полости А и Б сообщаются с атмосферой. Клапан начинает закрываться за счет воздействия воздуха на поршень 3. Перед посадкой клапана на седло управляющий поршень 4 отсекает поступление воздуха в полость В, и закрытие осуществляется путем воздействия воздуха на поршень 4; одновременно малый поршень 3 разобщает полость Б с атмосферой. Оставшийся в полости Б воздух по каналам К перетекает в полость В, что обеспечивает торможение и мягкую посадку клапана на седло.

Надежность пуска зависит от следующих факторов:

  •  Степень износа цилиндро-поршневой группы и, в первую очередь, поршневых колец.
  •  Тепловое состояние двигателя перед пуском.
  •  Давление пускового воздуха.
  •  Состояние топливовпрыскивающей аппаратуры, давление распыливания и величина цикловой подачи при пуске.

При пуске холодного двигателя от сжимаемого в цилиндрах воздуха отбирается большое количество тепла, в итоге температура и давление в цилиндре могут оказаться низкими и недостаточными для самовоспламенения впрыскиваемого топлива. Приходится долго раскручивать двигатель на воздухе, подаваемое топливо, не воспламеняясь, скапливается в цилиндре и при воспламенении очередной порции топлива в реакцию сгорания вовлекается ранее не сгоревшее топливо. Это приводит к чрезмерному росту давлений в цилиндре, подрываются предохранительные клапаны, увеличиваются механические нагрузки на подшипники, донышки поршней и крышек цилиндров. Известны случаи появления в них трещин. К подобным явлениям приводит также пуск двигателя при низких давлениях пускового воздуха. Скорость вращения его на воздухе мала, увеличиваются потери сжимаемого воздуха через неплотности поршневых колец , давления и температуры в конце сжатия оказываются недостаточными для надежного самовоспламенения. Этому также способствует низкое давление распыливания, создаваемое ТНВД при низких оборотах.. К взрывам в цилиндрах может приводить также чрезмерно большая цикловая подача топлива, поступающего в цилиндр при совмещенном пуске.

Практические рекомендации

1. Избегать пуска двигателя при низких давлениях пускового воздуха, особенно, если двигатель не был предварительно прогрет.
2. Обязательно прогревать двигатели перед пуском. Для этого осуществлять прокачивание через блок двигателя горячей воды, выходящей из работающих дизелей.
3. Подбирать величину цикловой подачи топлива такой, чтобы она не была чрезмерно большой и не вызывала взрывного сгорания и, в то же время, была достаточной для должного распыливания и самовоспламенения. При пуске со взрывами – при наличии ДАУ внести изменения в ее программу.

 

Системы пуска двигателя внутреннего сгорания.

Системы пуска двигателя



Система пуска обеспечивает первоначальное проворачивание коленчатого вала при пуске двигателя, поскольку сам двигатель в неподвижном состоянии не создает вращающего момента, и без внешнего источника энергии не запустится.

Для того, чтобы вдохнуть в двигатель жизнь, его коленчатому валу нужно сообщить определенную начальную (пусковую) частоту вращения, после чего начинают протекать газообменные и термодинамические процессы в цилиндрах, а также функционировать основные системы, обеспечивающие работу двигателя – питания, зажигания, смазки. В цилиндры двигателя начинает поступать горючая смесь (у дизелей – чистый воздух), в нужный момент на свечи зажигания подается искрообразующий электрический импульс, либо впрыскивается порция топлива (у дизелей), а система смазки обеспечивает снижение сил трения при работе механизмов двигателя – двигатель запускается и начинает работать самостоятельно.

При первоначальном проворачивании коленчатого вала системе пуска необходимо преодолеть моменты сопротивления следующих составляющих:

  • момент сил трения, возникающих между поверхностями сопряженных деталей двигателя и во вспомогательных механизмах, имеющих привод от коленчатого вала;
  • момент инерционных сил, которые появляются в процессе разгона двигателя, создаваемых движущимися деталями. Основную долю момента инерционных сил составляет момент инерции маховика;
  • момент сопротивления тепловых циклов горючей смеси, определяемый затратами энергии на расширение и сжатие заряда в цилиндрах двигателя. Эта составляющая зависит от величины компрессии в цилиндрах, степени сжатия и рабочего объема двигателя.

Суммарный момент сопротивления зависит, также, от типа и мощности двигателя, а также от его температуры и технического состояния. Так, с понижением температуры увеличивается вязкость масла смазывающей системы, что приводит к увеличению момента сил трения.

Система пуска должна обладать достаточной мощностью, чтобы преодолеть моменты сопротивления, заставив вращаться коленчатый вал с частотой, необходимой для запуска двигателя. За все время существования двигателей внутреннего сгорания изобретатели и конструкторы разработали и испробовали на практике разнообразные способы пуска двигателей. И в современных двигателях можно встретить разные по принципу действия и конструкции пусковые устройства. При этом используемый в двигателе способ пуска во многом определяется назначением и характером работы машины, а также условиями, в которых она эксплуатируется.

***

Классификация систем пуска двигателя

Поршневые двигатели внутреннего сгорания можно запустить, раскручивая коленчатый вал различными способами:

Мускульный пуск

Мускульный пуск осуществляется вручную при помощи пусковой рукоятки (или другого аналогичного устройства), либо проворачиванием вывешенного ведущего колеса, когда второе ведущее колесо заторможено (опирается на дорогу и не вращается благодаря дифференциалу).

В данном способе источником энергии для проворачивания коленчатого вала двигателя является мускульная сила человека.

Мускульный пуск применяется на современных автомобилях только в случае отказа штатной системы пуска. Он достаточно опасен с точки зрения травмирования человека, поэтому требует особой осторожности при применении. Запускать дизельный двигатель при помощи мускульного пуска значительно сложнее и опаснее, чем двигатель с принудительным воспламенением из-за высокой степени сжатия в цилиндрах.

В последние годы на легковых автомобилях производителями не предусматриваются штатные устройства для мускульного пуска двигателя.

Пуск методом буксировки

Методом буксировки двигатель можно запустить при помощи другого транспортного средства либо с использованием мускульной силы группы людей или животных (лошадей, мулов и т. п.).

Буксированием автомобиль разгоняется до некоторой скорости, после чего водитель включает передачу КПП (обычно 3-ю) и плавно включает сцепление, заставляя коленчатый вал крутиться.

Данный метод пуска двигателя не применим для автомобилей, оборудованных автоматической коробкой передач.

Пуск от электродвигателя

Пуск от электрического двигателя постоянного тока — стартера, использующего для своей работы энергию аккумуляторной батареи автомобиля. Этот способ наиболее удобен и практичен, поэтому применяется в подавляющем большинстве систем пуска современных автомобильных двигателей.

Стартер конструктивно объединяет электродвигатель постоянного тока, привод с обгонной муфтой, соединяющий стартер с венцом маховика, и электрическое реле включения электродвигателя.

Пуск с помощью вспомогательного двигателя — «пускача»

Пуск основного двигателя от вспомогательного двигателя внутреннего сгорания малой мощности, который запускается от других источников энергии, в том числе – вручную. Этот способ нередко применяется в тракторных двигателях, поскольку позволяет легко запустить двигатель большой мощности с высокой степенью сжатия, свойственной дизелям, мало зависит от степени заряда аккумуляторной батареи, поэтому применим в любых условиях, в том числе вдали от населенных пунктов.

В качестве пусковых двигателей обычно используют небольшие карбюраторные двигатели, называемые «пускачами».

Пневматический пуск

Пневматический пуск осуществляется с использованием энергии сжатого воздуха, который накапливается в специальных баллонах при работе основного двигателя. Этот способ пуска ДВС в автомобильном транспорте применения не нашел; его чаще используют для запуска судовых и тепловозных двигателей, а также дизелей тяжелой бронетанковой техники.



Инерционный пуск

Инерционный пуск с использованием энергии вращающегося маховика, накопившего энергию во время работы двигателя — может использоваться для запуска двигателя после кратковременной остановки. Впрочем, известны инерционные системы пуска, в которых тяжелый маховик первоначально раскручивался вручную, после чего его энергия использовалась для пуска двигателя и после длительной стоянки.

К инерционному пуску можно отнести пуск двигателя, заглохшего во время движения транспортного средства – включение какой-либо передачи КПП при плавном включении сцепления позволяет раскрутить коленчатый вал от вращающихся колес. Такой способ пуска двигателя иногда еще называют ротационным.

Непосредственный пуск

Непосредственный пуск (Direct Start) – перспективный способ пуска двигателя внутреннего сгорания без применения внешних источников механической энергии, предложенный известной фирмой Bosch.

Оригинальность этого способа пуска заключается в том, что с помощью бортового компьютера определяется, какой из цилиндров двигателя наиболее подходит для выполнения такта рабочего хода (поршень находится чуть за пределами верхней мертвой точки), после чего в него подается и воспламеняется небольшая порция горючей смеси – двигатель начинает работать.

По ряду причин этот способ можно использовать в двигателях с числом цилиндров не менее четырех.

Работы над воплощением этой идеи в настоящее время ведутся, и вполне возможно, электрическую систему пуска заменит более эффективный и удобный непосредственный пуск.

Пиротехнический пуск

Еще один редкий способ запуска двигателя. Пиротехнический пуск — способ с использованием пиротехнических веществ, например, пороха, не получивший применения на автомобилях. Этот способ технологически похож на пневматический пуск, и отличается тем, что не требует запаса сжатого воздуха — давление пуска обеспечивают пороховые газы, образующиеся при сгорании пиропатрона, который можно воспламенить электрической искрой или ударом обыкновенного молотка по капселю.

В настоящее время пиротехнический пуск используется на некоторых моделях снегоходов и моторных судовых шлюпок, поскольку удобен тем, что в некоторых условиях для пуска двигателя другие источники энергии недоступны.

Основное требование, предъявляемое к системам пуска двигателя – обеспечение достаточной частоты вращения коленчатого вала, для чего необходим крутящий момент определенной величины. При этом система пуска должна надежно функционировать в любых условиях эксплуатации двигателя внутреннего сгорания, и минимально расходовать запасы собственных источников энергии транспортного средства.

***

Вспомогательные устройства пуска двигателя

К системе пуска относятся и устройства, облегчающие пуск холодного двигателя, особенно при низких температурах окружающей среды. Такие устройства в момент пуска холодного двигателя позволяют улучшить искрообразование (в двигателях с принудительным воспламенением смеси), обеспечить подачу в цилиндры горючей смеси необходимого качества и количества, выполняют продувку цилиндров, а также предварительный подогрев горючей смеси, смазочного материала, охлаждающей жидкости и деталей основных механизмов двигателя.

Особенно затруднен пуск холодного двигателя, оборудованного газовой и дизельной системой питания в зимнее время. Здесь, наряду с перечисленными выше причинами, имеют место и специфические трудности пуска, обусловленные характеристиками используемого топлива и типом системы питания.

Так, газовое топливо при выходе из баллонов нуждается в подогреве (газообразное) или испарении (жидкий газ). Для того, чтобы подогреватель или испаритель начали функционировать, необходимо изначально запустить и прогреть двигатель, поскольку в подогревателе используются отработавшие газы, а в испарителе — горячая жидкость системы охлаждения. Очевидно, в холодном состоянии системы двигателя не могут обеспечить нормальный подогрев газа перед подачей его в редуктор и смеситель. Поэтому пуск двигателя в газобаллонных автомобилях обычно осуществляется на бензине, а после некоторого прогрева двигателя переключают систему питания на газообразное топливо.

Для дизелей дополнительной причиной затруднения пуска является холодный воздух. Поскольку дизельный двигатель использует для воспламенения горючей смеси сильное сжатие воздуха, то очевидно, что холодный воздух при одной и той же степени сжатия прогреется меньше, чем теплый воздух, и воспламенение смеси будет затруднено или даже невозможно. Кроме того, высокая степень сжатия в дизелях, характеризующаяся значительным компрессионным сопротивлением, создает дополнительное препятствие работе системы пуска (стартера или пускового двигателя), и при запуске трудно раскрутить коленчатый вал до нужной частоты.

Для устранения описанных причин затрудненного пуска дизелей применяются такие конструкторские решения, как предварительный подогрев воздуха во впускном трубопроводе с помощью специальных электронагревательных свечей, а также декомпрессоры — устройства, снижающие компрессию двигателя в момент раскручивания коленчатого вала перед пуском двигателя. Декомпрессоры обычно открывают клапана (впускной, выпускной или оба), что облегчает стартеру раскручивание коленчатого вала до нужной частоты, а после отключения декомпрессора двигатель запускается.

Кроме того, декомпрессор может быть использован для аварийной остановки двигателя в случае необходимости — снижение компрессии в цилиндрах исключает возгорание горючей смеси, и дизель глохнет.

Конструктивно декомпрессор представляет собой систему тяг и рычагов с ручным или электромагнитным приводом, воздействующих на штанги толкателей и открывающих клапаны ГРМ.

В условиях очень низких температур для облегчения пуска двигателя нередко применяют эфиросодержащие жидкости, впрыскиваемые в небольшом количестве во впускной тракт системы питания.

В холодное время года наиболее удобным и надежным средством облегчения пуска двигателей являются предпусковые подогреватели.

***

Автомобильные стартеры



Главная страница
Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Системы пуска и реверсирования — MirMarine


Системы пуска


Задача пусковой системы состоит в раскручивании двигателя до оборотов, при которых создаваемые в цилиндрах давление и температуры сжимаемого воздуха будут достаточны для самовоспламенения впрыскиваемого топлива. Раскручивание судовых дизелей осуществляется сжатым воздухом, и лишь пуск быстроходных двигателей небольшой мощности производится с помощью электростартера или пусковой турбинки, работающей на сжатом воздухе.


Процесс пуска включает следующие три этапа:

  • интенсивный разгон двигателя в начальный период под действием давления пускового воздуха, поступившего в цилиндр, поршень которого находился в пусковом положении;
  • последующий разгон двигателя под давлением воздуха, поступающего в остальные цилиндры в соответствии с порядком их работы;
  • переход двигателя на работу на топливе.


Подача пускового воздуха осуществляется в тот цилиндр, поршень которого находится в положении, соответствующем такту расширения. Обычно это соответствует положению соответствующего колена вала на участке 1-6° за ВМТ и до 100-110° п.к.в. В этот момент в цилиндр через специальный пусковой клапан поступает сжатый воздух. Под его давлением поршень движется вниз, вращая коленчатый вал. В дальнейшем в период пуска воздух поступает последовательно во все цилиндры в порядке их работы. Особенно тяжелые условия пуска создаются в главных судовых дизелях с прямой передачей на гребной винт, так как энергия пускового воздуха должна преодолеть не только энергию на раскручивание самого двигателя, но и сопротивление вращению гребного винта с присоединенными к нему массами воды.


В системе с пневматически управляемыми пусковыми клапанами (рис. 13.1) сжатый воздух подводится от главного пускового (маневрового) клапана 3 по трубе 4 одновременно ко всем пусковым клапанам 5 цилиндров. Однако клапаны пока остаются закрытыми. Когда поршень какого-либо цилиндра находится в пусковом положении к его пусковому клапану от воздухораспределителя 1, соединенного с главным пусковым клапаном трубопроводом 2, будет подан воздух. Он откроет клапан, и рабочий воздух поступит в цилиндр и, надавив на поршень, приведет вал во вращение.


Пуск сжатым воздухом может производиться как с одновременной подачей топлива в цилиндры (смешанный пуск), так и без нее (раздельный пуск).


Минимальное число цилиндров, при котором обеспечивается пуск из любого положения коленчатого вала, составляет у дизелей: четырехтактных iмин = 6, двухтактных iмин =4.


Устройство пусковой системы.


Главный пусковой клапан служит для осуществления многократных пусков при открытых разобщительных клапанах на баллонах пускового воздуха и разгрузки пусковой магистрали после завершения пуска.


Главный пусковой клапан дизеля (рис. 13.2) состоит из тарелки 3, вспомогательного разгрузочного клапана 4 и поршня 2 управляющего цилиндра, нагруженного пружиной 1. Воздух из пусковых баллонов поступает в полость Б главного пускового клапана и одновременно через клапан управления пуском на посту управления в полость А управляющего цилиндра. При этом главный пусковой клапан закрыт, а пусковой трубопровод через вспомогательный клапан 4 сообщен с атмосферой. При установке рукоятки на посту управления в положение «Пуск» клапан управления пуском сообщает полость А управляющего цилиндра с атмосферой. Главный пусковой клапан открывается, и воздух поступает к пусковым клапанам рабочих цилиндров; клапан 4 разобщает пусковую магистраль с атмосферой.


В аварийных случаях клапан может быть открыт или закрыт с помощью штока с маховиком. Воздухораспределитель служит для управления моментами открытия и закрытия пусковых клапанов на цилиндрах в порядке их работы. По конструкции воздухораспределители подразделяются на дисковые, золотниковые и клапанные.


Принцип работы золотникового воздухораспределителя (рис. 13.3). При открытии главного пускового клапана воздух заполняет полость А. За счет разности площадей поясков 2 и 3 золотник прижимается к шайбе 4, имеющей отрицательный профиль. При вращении шайбы и попадании хвостовика золотника во впадину шайбы полость А соединяется с каналом В, ведущим к управляющему цилиндру пускового клапана одного из цилиндров. После закрытия главного пускового клапана золотник с помощью пружины 1 отжимается от шайбы 4. Канал В сообщается с полостью Б, соединенной с атмосферой, и магистраль управляющего воздуха разгружается. При реверсе распределительный валик воздухораспределителя сдвигается в осевом направлении, и под хвостовики золотников подводится второй комплект кулачных шайб.


Поступающий к воздухораспределителю пусковой воздух давит на все управляющие клапаны 5, сидящие на кулаке 2. В зависимости от положения управляющих клапанов 5 пусковой клапан под давлением воздуха, поступающего от соответствующего управляющего клапана, открывается в том цилиндре, поршень которого находится в пусковом положении (за ВМТ). Под действием давления воздуха поршень приходит в движение и вращает коленчатый вал.


Кулак 2 также вращается, и следующий по порядку работы цилиндров управляющий клапан 5 активируется и подает воздух в следующий цилиндр. При достижении заданных оборотов система ДАУ включает подачу топлива, и пусковой режим прекращается. Подача сжатого воздуха в пусковую систему прекращается, и она сообщается с атмосферой, управляющие клапаны 5 пружинами поднимаются над кулаками, и процесс пуска прекращается.


В двигателях «МАН Бурмейстер и Вайи» при реверсе распределительный валик воздухораспределителя смещается, в осевом направлении и под хвостовики золотников подводится второй комплект кулачных шайб, соответствующих заднему ходу.


Пусковые клапаны служат для подачи сжатого воздуха в цилиндры при пуске дизеля. Клапаны открываются воздухом, поступающим к их управляющим поршням от воздухораспределителя.


Пусковой клапан дизеля «Бурмейстер и Вайн» (рис.13.5а) состоит из штока 6 с тарелкой 8 и направляющими ребрами 7, уравновешивающего поршня 5, пружины 4 и управляющего поршня 3. Масленка 2 и тавотница 1 служат для подачи смазки. Воздух от главного пускового клапана подводится в полость между уравновешивающими поршнем и тарелкой клапана, а от воздухораспределителя — в полость над управляющим поршнем.


Пусковой клапан дизеля «Зульцер» (рис.13.56) состоит из корпуса, штока 6, клапана с тарелкой 7 и уравновешивающим поршнем 5, управляющих поршней 4 и 3 и пружины 1. Управляющий поршень 3 выполнен дифференциальным. Управляющий воздух для открытия клапана подается от воздухораспределителя в полость А; одновременно полость под поршнем 4 воздухораспределитель сообщает с атмосферой. Давление управляющего воздуха действует вначале только на меньшую площадь дифференциального поршня 3. Клапан начнет открываться, если давление управляющего воздуха равно или больше давления в цилиндре. Этим предотвращается забрасывание пламени из цилиндра в пусковой трубопровод при применении смешанного пуска, когда в цилиндр подаются одновременно сжатый воздух и топливо.


После небольшого перемещения поршня 3 вниз уплотнительное кольцо малого поршня открывает прорези 2, через которые воздух поступает в полость Б, и клапан начинает быстро открываться за счет давления на полную площадь дифференциального поршня.


Для закрытия клапана управляющий воздух из воздухораспределителя подается в полость В; одновременно полости А и Б сообщаются с атмосферой. Клапан начинает закрываться за счет воздействия воздуха на поршень 3. Перед посадкой клапана на седло управляющий поршень 4 отсекает поступление воздуха в полость В, и закрытие осуществляется путем воздействия воздуха на поршень 4; одновременно малый поршень 3 разобщает полость Б с атмосферой. Оставшийся в полости Б воздух по каналам К перетекает в полость В, что обеспечивает торможение и мягкую посадку клапана на седло.


Надежность пуска зависит от следующих факторов:

  • степень износа цилиндро-поршневой группы и в первую очередь поршневых колец;
  • тепловое состояние двигателя перед пуском;
  • давление пускового воздуха;
  • состояние топливовпрыскивающей аппаратуры, давление распиливания и величина цикловой подачи при пуске.


При пуске холодного двигателя от сжимаемого в цилиндрах воздуха отбирается большое количество тепла, в итоге температура и давление в цилиндре могут оказаться низкими и недостаточными для самовоспламенения впрыскиваемого топлива. Приходится долго раскручивать двигатель на воздухе, подаваемое топливо, не воспламеняясь, скапливается в цилиндре и при воспламенении очередной порции топлива в реакцию сгорания вовлекается ранее не сгоревшее топливо. Это приводит к чрезмерному росту давлений в цилиндре, подрываются предохранительные клапаны, увеличиваются механические нагрузки на подшипники, донышки поршней и крышек цилиндров. Известны случаи появления в них трещин. К подобным явлениям приводит также пуск двигателя при низких давлениях пускового воздуха. Скорость вращения его на воздухе мала, увеличиваются потери сжимаемого воздуха через неплотности поршневых колец, давления и температуры в конце сжатия оказываются недостаточными для надежного самовоспламенения. Этому также способствует низкое давление распыливания, создаваемое ТНВД при низких оборотах. К взрывам в цилиндрах может приводить также чрезмерно большая цикловая подача топлива, поступающего в цилиндр при совмещенном пуске.


Практические рекомендации.


1. Избегать пуска двигателя при низких давлениях пускового воздуха, особенно если двигатель не был предварительно прогрет.


2. Обязательно прогревать двигатели перед пуском. Для этого осуществлять прокачивание через блок двигателя горячей воды, выходящей из работающих дизелей.


3. Подбирать величину цикловой подачи топлива такой, чтобы она не была чрезмерно большой и не вызывала взрывного сгорания и в то же время была достаточной для должного распыливания и самовоспламенения. При пуске со взрывами — при наличии ДАУ внести изменения в ее программу.


Системы реверсирования


Система реверса служит для изменения направления вращения коленчатого вала мало- и среднеоборотных судовых дизелей. Независимо от принципа работы и способа исполнения устройство для реверсирования дизеля должно обеспечивать правильное чередование и изменение фаз распределения органов пуска, газораспределения, топливоподачи, а также реверсирование навешенных на дизель вспомогательных механизмов. Необходимость изменения фаз распределения при реверсировании дизеля вытекает из следующего. Предположим, что кривошипы коленчатого вала шестицилиндрового дизеля занимают положение, показанное на рис. 13.6а. В рассматриваемом варианте для пуска дизеля в направлении «Вперед» необходимо подать воздух в пятый цилиндр, который в рассматриваемом случае находится в пусковом положении, и диск дискового воздухораспределителя (или пусковая шайба воздухораспределителя со звездообразным расположением золотников) соответственно должен находиться в положении, при котором воздух после открытия главного пускового клапана должен поступить к пусковому клапану пятого цилиндра (рис. 13.66). При этом пусковая шайба будет вращаться против часовой стрелки.


Для пуска дизеля «Назад» из того же положения пусковой воздух необходимо подать в четвертый цилиндр.


Для этого диск (или шайбу) необходимо повернуть в положение, показанное на рис. 13в; диск будет вращаться по часовой стрелке.


Очевидно, что воздухораспределитель с рядным расположением золотников должен иметь по две кулачные шайбы (переднего и заднего хода) для каждого золотника, и его распределительный валик при реверсировании должен смещаться в осевом направлении.


Предположим также, что при работе четырехтактного дизеля «Вперед» в одном из цилиндров закончился процесс расширения и поршень находится в НМТ. Так как выпускной клапан начинает открываться до НМТ, то при рассматриваемом положении поршня выступ кулачной шайбы 3 уже набежит на ролик 1 толкателя выпускного клапана (рис. 13.7а), и он будет открыт на величину h. Если с этого момента вал дизеля должен изменить направление вращения на обратное, то процесс выпуска независимо от направления вращения должен продолжаться, а следовательно, должен открываться и выпускной клапан. Однако при обратном вращении распределительного вала кулачная шайба 3 уже не может открыть клапан и требуется установка второй шайбы 2, зеркально расположенной по отношению к первой. Таким образом, для возможности работы дизеля «Вперед» и «Назад» необходимо иметь по две кулачные шайбы для каждого клапана.


Подача топлива в цилиндр обычно начинается до ВМТ и заканчивается после нее по прошествии 20-25° п.к.в. Следовательно, при положении поршня в ВМТ плунжер ТНВД еще продолжает свой нагнетательный ход, и кулачная шайба топливного насоса должна быть заклинена по отношению к кривошипу с отставанием на угол φ (рис.13.76). Точки НП и КП на профиле шайбы соответствуют началу и концу подачи топлива; их расположение зависит от способа регулирования ТНВД и цикловой подачи топлива. При реверсировании дизеля рабочий участок шайбы НП-КП находится на другой стороне ее профиля. Поэтому распределительный вал необходимо развернуть на угол 2 φ (если шайбы имеют симметричный профиль) или сместить его в осевом направлении и подвести под ролики толкателей ТНВД другой комплект кулачных шайб.


В двигателях МАН-МС (см. рис. 13.8) топливный кулак имеет симметричный профиль и реверсирование фаз топливоподачи не требует разворота распределительного вала, а осуществляется перекидыванием ролика 3 с помощью сервомотора 4 с профиля кулака 1 на 2 или наоборот.


Процесс реверсирования главных судовых дизелей является весьма напряженным, так как при реверсировании во время хода судна приходится быстро тормозить не только вращающийся вал двигателя, но и гасить инерцию движения судна. После подачи сигнала «Стоп» (выключения подачи топлива) крутящий момент двигателя падает до нуля, но его вал продолжает вращаться под действием инерции движущихся масс двигателя, а также в силу того, что гребной винт за счет продолжающегося движения судна переходит в режим гидротурбины. Процесс торможения составляет 2-10 минут в зависимости от скорости хода судна, его водоизмещения и характеристик гребного винта. Реверсирование двигателя может быть осуществлено лишь после остановки двигателя. Если же на ходу судна поступает команда «Полный назад», то обстоятельства заставляют прибегнуть к быстрой остановке двигателя за счет подачи контрвоздуха в цилиндры, в которых в этот период происходит такт сжатия.


Реверсирование двигателя на ходу судна включает следующие операции:

  • выключение подачи топлива;
  • реверсирование газораспределительных органов и топливоподачи из положения «Вперед» в положение «Назад» еще при вращающемся вале;
  • торможение двигателя контр-воздухом;
  • пуск двигателя в требуемом направлении и перевод на работу на топливе.


Торможение контрвоздухом осуществляется после реверсирования воздухораспределителя, тогда пусковой воздух к пусковым клапанам начнет поступать за 65-110° п.к.в. до прихода поршней в ВМТ и тем самым тормозить их движение.


Нужно иметь в виду, что режим реверсирования с контрвоздухом является весьма напряженным и к нему следует прибегать лишь в экстренных ситуациях.


Литература


Судовые двигатели внутреннего сгорания — Возницкий И.В. Пунда А.С. [2010]

Похожие статьи

Устройство автомобиля: система пуска двигателя

Система пуска двигателя

    Система пуска двигателя состоит из следующих механизмов (рисунок 20.1):

  • стартер с тяговым реле и механизмом привода,
  • реле включения стартера,
  • замок зажигания.

Стартер — мощный электрический двигатель постоянного тока. Именно с его помощью происходит запуск двигателя, путем поворота ключа в замке зажигания. Когда водитель повернул ключ, ток через реле пошел от аккумуляторной батареи на обмотки стартера, что заставляет работать двигатель.

Рис. 20.1. Схема системы пуска двигателя
а) стартер выключен
1 — корпус стартера; 2 — вал якоря стартера; 3 — шестерня привода с муфтой свободного хода; 4 — рычаг привода шестерни; 5 — обмотки тягового реле; 6 — якорь тягового реле;
7 — контактная пластина; 8 — контактные болты; 9 — обмотки стартера; 10 — якорь стартера; 11 — коленчатый вал двигателя; 12 — зубчатый венец маховика


Рис. 20.1. Схема системы пуска двигателя
б) стартер включен

Рис. 20.1. Схема системы пуска двигателя в) схема электрической цепи стартера
1 — аккумуляторная батарея; 2 — предохранитель; 3 — замок зажигания; 4 — реле стартера

Стартер совершает работу в три этапа:

1. С помощью механизма привода стартера шестерня на валу якоря вступает в зацепление с зубчатым венцом маховика.

2. Вал и шестерня начинают вместе вращаться. Шестерня проворачивает коленчатый вал двигателя через маховик. Происходит запуск двигателя.

3. Как только двигатель начал работать, механизм привода выводит шестерню из зацепления с зубчатым венцом маховика.

Все эти этапы повторяются каждый раз при повороте ключа в замке зажигания.

По результатам теста, только 29.47% успешно сдали экзамен.
Остальные 70.53% продолжают ездить по дорогам Ташкента, подвергая опасности Вас и Ваших детей.
Безопасность на дорогах зависит от каждого из нас. Проверь свои знания. Пройди тестирование.

Система пуска двигателя — 27R.Ru

Справочник

Система пуска двигателя включает в себя:

  • стартер с тяговым реле и механизмом привода,
  • реле включения стартера,
  • замок зажигания.

Стартер представляет собой мощный электрический
двигатель постоянного тока, который служит для запуска двигателя автомобиля.

Простым поворотом ключа в замке зажигания в положение «Запуск«, ток через реле подается от аккумуляторной батареи на обмотки стартера и двигатель запускается.

Схема системы пуска двигателя

а) стартер выключен

1 — корпус стартера;
2 — вал якоря стартера;
3 — шестерня привода с муфтой свободного хода;
4 — рычаг привода шестерни;
5 — обмотки тягового реле;
6 — якорь тягового реле;
7 — контактная пластина;
8 — контактные болты;
9 — обмотки стартера;
10 — якорь стартера;
11 — коленчатый вал двигателя;
12 — зубчатый венец маховика

Схема системы пуска двигателя

б) стартер включен

Схема системы пуска двигателя

в) схема электрической цепи стартера

1 — аккумуляторная батарея;
2 — предохранитель;
3 — замок зажигания;
4 — реле стартера

Работа стартера состоит из трех этапов:
1. Механизм привода стартера вводит шестерню на валу якоря в зацепление с зубчатым венцом маховика.
2. Начинается вращение вала якоря стартера вместе с шестерней, которая проворачивает коленчатый вал двигателя через маховик, тем самым, запуская двигатель.

3. После начала работы двигателя, механизм привода выводит шестерню стартера из зацепления с зубчатым венцом маховика.

Система пуска

Большинство судовых двигателей запускаются сжатым возду­хом под давлением, равным 2—3 Мн/м2 (для тихоходных) и 6—7,5 Мн/м2 для быстроходных).

Запуск двигателей малой мощ­ности осуществляется электро­стартером, а вспомогательные двигатели мощностью меньше 15 квт имеют ручной пуск. Сущ­ность воздушного пуска заклю­чается в том, что сжатый воздух поступает последовательно через пусковые клапаны во все цилинд­ры (в порядке их нормальной ра­боты), и коленчатый вал двига­теля быстро набирает частоту вращения. Пусковые клапаны, расположены в крышках рабочих цилиндров и управляются чаще всего пневматически.

В состав системы пускового воздуха входят: компрессоры для производства сжатого воздуха, баллоны для его хранения, влагомаслоотделители, воздухопрово­ды, главный пусковой клапан, распределитель пускового воздуха (с числом рабочих золотников по числу цилиндров двигателя) и пусковые клапаны.

На рис. 180 показаны принципиальная схема пуска двигателя сжатым возду­хом. Баллон 1 сжатого воздуха воздухопроводом соединен с пус­ковым клапаном 3 и воздухораспределителем 12 через главный пусковой клапан 11. Включение главного пускового клапана осу­ществляется дистанционно с поста управления. При включенном главном пусковом клапане сжатый воздух, преодолев натяжение пружины 8, опустит вниз золотник 7 воздухораспределителя. Воздух из воздухораспределителя поступит к поршню 5 пускового клапана 2 и откроет его. Пусковой воздух поступит в цилиндр дви­гателя и приведет его в действие. Когда кулачная шайба 9 через ролик 10 возвратит золотник 7 в крайнее верхнее положение, воз­дух из пространства над поршнем 5 через канал 6 воздухораспре­делителя будет выпущен в атмосферу. Пружина 4 закроет пуско­вой клапан.


В соответствии с Правилами Регистра для реверсивных главных двигателей запас воздуха в баллонах должен обеспечи­вать не менее двенадцати последовательных пусков и реверсов, начиная с холодного состояния двигателя, без пополнения балло­нов; для вспомогательных двигателей — шесть пусков.

Система пуска двигателя


Категория:

   1Отечественные автомобили


Публикация:

   Система пуска двигателя


Читать далее:

Система пуска двигателя

Система пуска двигателя состоит из стартера, аккумуляторной батареи и включателя зажигания. Эта система предназначена для удобного, быстрого и надежного пуска двигателя в различных условиях эксплуатации легкового автомобиля.

В системе пуска двигателя могут возникнуть самые разные неисправности. Основные из них: стартер прокручивает коленчатый вал двигателя с малой частотой вращения, при включении стартера его якорь не вращается, не включаются стартер и тяговое реле /, после пуска двигателя стартер не выключается.

Рекламные предложения на основе ваших интересов:

Рис. 1. Система пуска двигателя ВАЗ:
1 — реле стартера; 2 — диск; 3— обмотка реле; 4— включатель зажигания; 5 — блок предохранителей; 6 — предохранитель № 1; 7 — генератор 8 аккумуляторная батарея; 9 — контрольная лампа; 10— стартер

Если во время проверки обнаружится, что при пуске двигателя стартер медленно проворачивает коленчатый вал, свет ламп накаливания тусклый, звук сигнала очень слабый, то это может означать, что аккумуляторная батарея разряжена или неисправна.

Неисправностями аккумуляторной батареи могут быть уменьшение ее емкости, саморазряд, а в отдельных случаях и полное прекращение действия отдельных элементов или аккумуляторной батареи в целом. Причинами уменьшения емкости могут быть сульфа-тация пластин или выкрашивание из них активной массы. Саморазряд может быть вызван утечкой увлажнением поверхности батареи или частично замыканием пластин внутри аккумуляторной батареи осадком выпавшей из пластин активной массы.

Полное прекращение действия отдельных элементов может наступить при отрыве блоков пластин от выводных штырей. Если такая неисправность возникла в пути, можно замкнуть между собой накоротко выводные штыри неисправного элемента. Устранять же вышеперечисленные неисправности аккумуляторной батареи можно только в условиях станций технического обслуживания.

Стартер медленно вращает коленчатый вал

Допустим, при проверке окажется, что подсоединенная непосредственно к аккумуляторной батарее переносная контрольная лампа горит полным накалом, значит аккумуляторная батарея исправна и полностью заряжена. В то же время частота вращения коленчатого вала двигателя недостаточна для пуска двигателя стартером. Причин этому может быть несколько. Основные из них: ненадежное соединение аккумуляторной батареи с «массой» —корпусом автомобиля, а также с приборами системы пуска (стартером, тяговым реле стартера, включателем зажигания) или неисправность этих приборов. В этом случае, подключив один провод переносной контрольной лампы к проверяемой клемме 50, а другой «к массе» автомобиля, необходимо тщательно и последовательно проверить сохранность проводов и надежность их соединения по всей электрической цепи, начиная от плюсовой клеммы аккумуляторной батареи до включателя зажигания, реле стартера, обратив особое внимание на исправность приборов системы пуска (стартера, реле стартера, включателя зажигания).

Выявленные неисправности при этом необходи по возможности устранить. Так, при проверке мог быть чрезмерное окисление клемм проводов, подходящих к аккумуляторной батарее, и ненадежный электрический контакт с выводными штырями. Необходимо снять клеммы, очистить их и выводы аккумуляторной батареи наждачной бумагой (тонкий слой окислившегося металла можно снять ножом) от окислов и надежно стянуть болтами. Гайки клеммных наконечников проводов следует затягивать надежно, но без увеличенного усилия. Нельзя также ударять каким-либо предметом по клеммному наконечнику, чтобы снять его или надеть на клемму аккумуляторной батареи. Это может привести к образованию трещин в крышке элемента или в уплотнительной мастике и вызвать утечку электролита из аккумулятора.

Если при проверке будет обнаружено, что нет поступления тока, например, на клемму 50 включателя зажигания, то необходимо (при подсоединенной к ней контрольной лампе) повернуть ключ включателя зажигания в положение «Пуск». Если контрольная лампа горит вполнакала (или не горит), значит неисправность во включателе (замке) зажигания.

Для проверки включателя зажигания следует отключить аккумуляторную батарею во избежание короткого замыкания и вынуть контактное устройство из включателя зажигания, сняв отверткой пружину (замочное кольцо). Неисправностями контактного устройства могут быть окисление и подгорание контактов, качание клемм или их замыкание между собой, оплавление пластмассового ротора, износ цилиндра. Подгоревшие контакты необходимо зачистить. Если при этом не будет достигнуто положительных результатов, то следует неисправное контактное устройство заменить новым.

Рис. 1. Включатель (замок) зажигания автомобиля ВАЗ:
1 — запорный стержень противоугонного устройства; 2 — корпус включателя зажигания; 3— контактное устройство; 4— пружина; 5— стопорная шайба; 6— шайба; 7— колодка; 8 пружина; 9 — цилиндр; 10 — ротор; 11 — текстолитовая шайба; 12—пружина; 13- валик; 14—выступ для соединения с цилиндром; 15— выступ для соединения с ротором; 16 — паз для соединения с втулкой противоугонного устройства

Можно временно для пуска двигателя переставить провода с клеммы включателя зажигания на одну из двух свободных клемм, тогда стартер заработает нормально. Временно это делается потому, что эти контакты могут отказать в работе, так как они не рассчитаны на такой большой ток, как контакты клеммы.

Рассмотрим еще такой случай. Например, при проверке контрольной лампой оказалось, что слабо поступает ток (или вообще не поступает) от клеммы включателя зажигания к тяговому реле стартера. Причиной этого являются повреждения и ненадежный электрический контакт соединяющей их цепи. Если проверкой будет установлено, что по ступление тока к клемме тягового реле стартера нормальное (контрольная лампа горит полным нака лом), а стартер вращает коленчатый вал двигателя с недостаточной частотой, значит неисправность в тяговом реле. Чтобы устранить неисправность тягового реле, необходимо снять стартер с автомобиля и осмотреть тяговое реле стартера. При свободном перемещении якоря тягового реле можно с уверенностью сказать, что неисправность в обмотке тягового реле: отсутствие надежного контакта или ее обрыв или подгорание диска. При этом необходимо наждачной шкуркой зачистить диск и устранить неисправность обмотки тягового реле или заменить ее новой на СТО.

Иногда стартер совсем не вращает коленчатый вал при исправной аккумуляторной батарее.

В этом случае следует осмотреть состояние наконечников проводов и выводов аккумуляторной батареи и при необходимости зачистить их и надежно затянуть.

При этой проверке необходимо обращать внимание, нет ли загрязнения коллектора и чрезмерного износа, а также загрязнения щеток стартера и, если надо, очистить подгоревший коллектор стеклянной шкуркой зернистостью 80—100 и продуть сжатым воздухом и протереть коллектор. Загрязненные щетки очистить, а изношенные заменить новыми. Затем проверить исправность включателя зажигания способом, рассмотренным ранее.

Рис. 2. Привод стартера и муфта свободного хода

Если включатель зажигания исправный и контрольная лампа горит полным накалом при подключении ее к клемме включателя зажигания в положении «Пуск» ключа зажигания, то следует проверить реле стартера. Его необходимо разобрать и зачистить контактный диск и контакты. Если стартер по-прежнему не будет вращать коленчатый вал, следовательно возникли неисправности в его обмотках возбуждения или якоря.

Обнаруженные неисправности следует устранить на СТО.

Если при включении стартера его якорь вращается с большой частотой, но шестерня не сцепляется с зубчатым венцом маховика, то нужно проверить и зачистить зубья венца маховика напильником или отрегулировать ход шестерни привода стартера в последовательности, указанной в инструкции завода-изготовителя. Наблюдаются также случаи, когда при полностью зацепленной с венцом маховика шестерне привода вращение вала стартера не передается маховику из-за пробуксовки муфты свободного хода. Пробуксовка муфты свободного хода может возникнуть в результате увеличенного износа шлицевой ведущей и ведомой обойм, роликов, шестерни, шлицевой втулки, толкателей, поломки пружин либо загрязнения муфты свободного хода. Обнаруженную загрязненную муфту следует промыть в бензине, опустив ее после промывки на 5 мин в моторное масло, а неисправные детали муфты заменить новыми.

Иногда стартер не выключается после пуска двигателя. Устранение этой неисправности надо начинать с проверки исправности (замка) включателя зажигания. Обнаруженное неисправное контактное устройство включателя зажигания заменить новым.

Затем следует убедиться, нет ли перекоса стартера, не возникло ли спекание контактов реле включения стартера. Перекос стартера необходимо устранить подтяжкой болтов крепления его корпуса к двигателю. Выявленное неисправное реле включения заменить новым или отремонтировать его на СТО.

Стартер может не выключаться после пуска двигателя из-за заедания привода муфты свободного хода на валу якоря, загрязнения шлицев и образования налета на поверхности вала от износа бронзовых подшипников втулки привода, а также в результате изгиба вала.

Привод стартера должен свободно, без заедании перемешаться по шлицам его вала и легко возвращаться в исходное положение под действием возвратной пружины. Якорь стартера не должен вращаться при повороте его шестерни привода в направлении рабочего движения.

Иногда при пуске двигателя не работает стартер, отсутствуют свет и звуковой сигнал. Это свидетельствует о неисправности на участке электрической цепи от стартера до аккумуляторной батареи включительно. Необходимо тщательно проверить чистоту и надежность соединений разъемов электрической цепи.

При выявлении плохого контакта следует зачистить его и надежно затянуть клеммы. Если контакты на всем участке цепи исправны, значит аккумуляторная батарея сильно разряжена: при включении фар свет в них становится тусклым.

Для пуска двигателя при разряженной аккумуляторной батарее можно на время пуска закоротить вариатор, замкнув медной проволокой зажимы ВК и ВК-Б катушки зажигания на автомобилях «Волга», «Москвич», «Запорожец».

Система пуска двигателя включает в себя аккумуляторную батарею, стартер, реле включения стартера и включателя стартера, являющегося частью включателя зажигания.

Стартер включает в себя четырехполюсный электродвигатель постоянного тока, механизмы привода и управления.

Электродвигатель состоит из корпуса с четырьмя полюсными сердечниками и обмоткой возбуждения, крышек, промежуточной опоры и якоря. Крышка имеет окна для доступа к щеткам. К крышке крепятся щеткодержателя, из которых (положительные) изолированы от массы. Металлографитовые щетки прижимаются к коллектору при помощи пружин. Крышка имеет фланец для крепления стартера к картеру маховика. Обе крышки крепятся к корпусу двумя стяжными болтами. Якорь состоит из вала, сердечника и коллектора и вращается в трех подшипниках скольжения, размещенных в крышках и промежуточной опоре. При прохождении тока по обмоткам полюсных сердечников возникает магнитное поле, которое взаимодействует с магнитным полем якоря, в результате чего обмотка якоря выталкивается из магнитного поля полюсных сердечников и якорь вращается.

Рис. 3. Схема системы пуска двигателя:
1— обмотка реле включения; 2—пружина; 3— сердечник; 4— реле включения старте-Ра; 5 — якорь реле включения; 6—контакты; 7— аккумуляторная батарея; 8—контактный диск; 9 — тяговое реле; 10 и 11 — удерживающая и втягивающая обмотки; 12—якорь; 13 — серьга; 14 — палец; 15 — рычаг; 16 — ось; 17 — муфта свободного хода; 18 — шестерня; 19 — зубчатый венец маховика; 20 — стартер; 21 — амперметр; 22 — включатель зажигания

Рис. 2. Стартер СТ230-А:
а — детали стартера; б — механизм привода стартера; в — муфта свободного хода; г — работа муфты свободного хода;
1 — уплотнительное кольцо; 2 и 8 — крышки; 3 — стяжной болт; 4—корпус стартера; 5—промежуточная опора; 6 — стопорное кольцо; 7— упорная шайба; 9 — упорная втулка; 10—ось; 11 — рычаг привода; 12 — обмотка возбуждения; 13 — якорь; 14 — корпус тягового реле; 15 — щетка; 16 —щеткодержатель; 17 — пружина щетки; 15 — защитный колпак; 19 — крышка тягового реле; 20 — вал якоря; 21 — шестерня с ведомой обоймой муфты свободного хода; 22 — бронзовые втулки; 23 — кожух; 24 — ведущая обойма; 25 — ролик; 26 — буферная пружина; 27 — поводковая муфта; 28 — толкатель; 29 — пружина; 30 — зубчатый венец маховика

Механизм привода обеспечивает передачу крутящего момента от стартера к венцу маховика при пуске двигателя и отсоединение шестерни стартера от маховика после пуска двигателя. Механизм привода установлен на валу якоря и состоит из шестерни, муфты свободного хода, буферной пружины, поводковой муфты и рычага с эксцентриковой осью. Муфта обеспечивает передачу вращения только в одном направлении. При вращении якоря стартера ролики заклинивают ведущую и ведомую обоймы, и крутящий момент передается на зубчатый венец маховика. Когда двигатель начнет работать, венец маховика начнет вращаться с большей скоростью и ролики расклинят обоймы. Стартер СТ142-В двигателя ЗИЛ-645 имеет храповичный механизм свободного хода.

Механизм управления включает в себя включатель зажигания, реле включения стартера и тяговое реле. При включении стартера замыкаются клеммы AM и СТ включателя за-жигания и по обмотке реле включения течет ток. Сердечник магничивается и притягивает якорь, замыкая контакты, через которые ток идет к обмоткам тягового реле. Якорь тягового реле притягивается к сердечнику и при помощи рычага вводит шестерню стартера в зацепление с зубчатым венцом маховика. В конце хода якорь тягового реле при помощи контактного диска замыкает контакты К1 и рабочей цепи стартера, и якорь стартера начинает вращаться, обеспечивая пуск двигателя. При выключении стартера контакты размыкаются пружиной, и все детали привода возвращаются в исходное положение.


Рекламные предложения:

Читать далее: Устранение простейших неисправностей системы зажигания и пуска двигателя

Категория: —
1Отечественные автомобили

Главная → Справочник → Статьи → Форум

Система запуска (Двигатель) | Строительство автомобилей

Пусковая система — это одна из систем двигателя, обеспечивающая запуск двигателя. Для этого необходимо проворачивать коленчатый вал с некоторой скоростью, чтобы двигатель всасывал топливно-воздушную смесь и сжимал ее.

Маховик с большим зубчатым венцом находится в двигателе. Обод маховика имеет зубцы на поверхности. Ведущая шестерня стартера входит в зацепление с ним и вращает коленчатый вал, инициируя рабочий цикл двигателя.Стартер — это специальное устройство, используемое для вращения коленчатого вала двигателя внутреннего сгорания.

Так как двигатель внутреннего сгорания полагается на инерцию каждого рабочего цикла, чтобы инициировать следующий рабочий цикл и запустить первый цикл двигателя, первый рабочий такт приводится в действие стартером. Для быстрого включения и выключения используется соленоид. Давайте посмотрим, как это работает: когда вы поворачиваете ключ зажигания, ток подается на соленоид, и стартер включается. Возвратная пружина служит для выключения стартера при отпускании ключа.

При подаче тока на соленоид электромагнит притягивает железный стержень. Два тяжелых контакта замыкают движение штока и замыкается цепь от аккумулятора к стартеру. Стартер должен вращаться не больше, чем необходимо для запуска двигателя. Длительная работа двигателя и стартера одновременно может серьезно повредить стартер.

Рассмотрим электродвигатель пусковой системы, создающий крутящий момент. Корпус электродвигателя выполнен из стали и имеет вид цилиндра.Внутри корпуса расположены обмотки возбуждения, намотанные на сердечники, прикрепленные к корпусу. Эти обмотки изготовлены из толстого проводящего провода, способного выдерживать сильный электрический ток. Обмотки создают электромагнитное поле, которое может вращать якорь стартера. Одним из элементов якоря является сердечник, с пазами по которым расположены витки обмоток якоря. Оба конца каждой обмотки подключены к коллектору. Крутящие моменты, создаваемые каждой из обмоток, складываются, так что вы можете вращать якорь, а точнее вал якоря.Если посмотреть на стартер со стороны коллектора, то можно увидеть щеткодержатель на якоре.

Якорь стартера. Якорь стартера состоит из вала, сердечника с пазами, на котором установлена ​​обмотка стартера. Для детального изучения предлагаю использовать схему якоря стартера.

Реле соленоида используется для подачи тока на стартер и включает бендикс в зацепление с маховиком для запуска двигателя.

Схема системы запуска двигателя:

1.Коллектор; 2 — а
задняя обложка; 3 — корпус статора; 4 — тяговое реле; 5 — якорь реле; 6 — крышка
со стороны привода; 7 — рычаг; 8 — кронштейн рычага; 9 — уплотнительная прокладка; 10 —
планетарная передача; 11 — ведущая шестерня; 12 — вкладыш крышки; 13 — ограничительное кольцо; 14 —
приводной вал; 15 — обгонная муфта; 16 — поводковое кольцо; 17 — опорный вал привода с
лайнер; 18 — шестерня с внутренним зацеплением; 19 — проехал; 20 — центральная шестерня; 21 —
анкеры опорного вала; 22 — постоянный магнит; 23 — якорь; 24 — щеткодержатель;
25 — кисть.

1. Привод системы запуска двигателя

Этот механизм
передает крутящий момент от электродвигателя на маховик. Приводная шестерня
установлен на валу якоря. Действие электромагнитного переключателя
заставляет рычаг привода переводить ведущую шестерню в зацепление с
зубчатый венец маховика (в этом положении вращение передается на
вал двигателя). При запуске двигателя муфта стеклоподъемника выключается, и теперь
ведущая шестерня переходит на холостой ход.Позже, при включенном зажигании, ведущая шестерня
отсоединяется от зубчатого обода.

Теперь рассмотрим настоящую
механизм: оконная муфта передает вращение только в одном направлении и
подключен к ведущей шестерне. На муфте стартера есть прорези под винты.
На валу якоря также имеются винтовые пазы. Приводная шестерня способна
скользить по ним при вращении. Прорези для винтов обеспечивают плавное зацепление
ведущая шестерня с зубчатым венцом. После того, как зубчатый венец входит в зацепление с ведущей шестерней,
двигатель вращается.Ведущая шестерня вращает зубчатый венец (в то время как муфта стеклоподъемника
работает). При запуске двигателя двигатель вращает ведущую шестерню, в то время как
муфта стеклоподъемника отключена. Ведущая шестерня вращается на холостом ходу, чтобы не
повредить электродвигатель.

2. Переключатель электромагнитный

Переключатель электромагнитный
— заставляет рычаг привода перемещать ведущую шестерню и направляет ток на
электродвигатель.

В центре
переключатель — плунжерный. Плунжер выполняет две функции: перемещает привод
рычаг соединен с одним концом плунжера, а также включает в себя главные контакты
через контактную пластину, соединенную с другим ее концом.Плунжер окружает
плунжер, который подтягивает плунжер к основным контактам. Удерживающая обмотка
расположен над втягивающей обмоткой, удерживающей плунжер на контактах.
Когда вы поворачиваете ключ зажигания, электрический ток проходит через
втягивая и удерживая обмотки, создавая магнитное поле. Это поле движется
поршень вправо. В результате контактная пластина замыкает основной
контакты. Теперь клемма 30 замыкается, а клемма C подключена к двигателю. А
на пусковой электродвигатель подается мощный ток, при этом
рычаг привода включает шестерню привода, и он начинает раскручивать двигатель.

Как электромагнитный переключатель?

Убирающийся и
удерживающие обмотки закреплены на корпусе переключателя. Контактная пластина расположена
на конце плунжера, противоположном главному контакту. Втягивание и удерживание
обмотки размещены вокруг плунжера, который притягивается возвратной пружиной.
После запуска двигателя возвратная пружина возвращает ведущую шестерню в исходное положение.
должность.

Схема системы запуска двигателя

  • Электродвигатель;
  • Система трансмиссии;
  • Переключатель электромагнитный;

Электрическая схема системы запуска двигателя

Положительный полюс
аккумулятор подключен к выводу 30 и замку зажигания.Терминал C
подключен к обмоткам возбуждения и обмотки якоря, заземлен на
корпус, а затем подключили к отрицательному полюсу аккумулятора. Все подключения
сделаны мощным кабелем, выдерживающим большие токи. Терминал 50 находится
подключен к плюсовой клемме аккумуляторной батареи через замок зажигания.

При повороте
ключ зажигания, ток сначала проходит через втягивание и удерживание
обмоток, затем по обмоткам возбуждения и обмотки якоря и, наконец,
наземь.Поскольку сопротивление якоря и обмоток возбуждения очень велико.
низкий, почти все напряжение АКБ приходится на втягивающую и удерживающую обмотки.
Возникающее в них поле перемещает плунжер вправо. Рычаг привода
связанный с плунжером перемещает муфту влево, при включении
винтовые пазы анкера. Вместе с зацеплением привода с
зубчатого венца маховика, главные контакты временно замкнуты. Когда основной
контакты замыкаются контактной пластиной обмотки возбуждения и якоря
питается напрямую от аккумулятора.После замыкания контактов потенциалы
клемм C и 50 уравновешены. Втягивающая обмотка больше не действует на
поршень. И удерживается в прежнем положении только магнитным полем.
удерживающей обмотки. Когда после запуска двигателя ключ зажигания
выключены, основные контакты остаются замкнутыми. Но теперь ток из основной
контакты в втягивающей обмотке поступают таким образом, что ее магнитное поле
находится напротив поля, удерживающего обмотки. Оба магнитных поля нейтрализуют каждый
другой выход.Теперь возвратная пружина перемещает плунжер в исходное положение и
открывает основные контакты. При этом приводная шестерня выключается и
возвращается в исходное положение.

Как работает система запуска

Стартер с предварительным включением

Шестерня приводится в движение соленоидом; есть начальный период, когда двигатель медленно вращается, чтобы обеспечить зацепление, поэтому вся операция более щадящая и вызывает меньший износ зубьев.

Сделать
двигатель
начать его надо крутить на какой-то скорости, чтоб хреново
топливо
и воздух в
цилиндры
, и сжимает его.

Мощный
электростартер

мотор
делает поворот. Его вал несет небольшую шестерню (
механизм
колеса), который входит в зацепление с большим зубчатым венцом вокруг обода
двигатель

маховик
.

В варианте с передним расположением двигателя
стартер
установлен низко рядом с задней частью двигателя.

Стартеру нужен тяжелый электрический
Текущий
, который он протягивает через толстые провода от
аккумулятор
.Нет обычного ручного управления
выключатель
может включить его: для работы с большим током нужен большой переключатель.

Выключатель должен включаться и выключаться очень быстро, чтобы избежать опасного, опасного искрения. Так что
соленоид
используется — устройство, в котором небольшой переключатель включает
электромагнит
завершить
схема
.

Цепь стартера

Все компоненты заземлены на металлический кузов автомобиля. Для передачи тока к каждому компоненту нужен только один провод.

Выключатель стартера обычно срабатывает
зажигание
ключ. Поверните ключ за пределы положения «зажигание включено», чтобы подать ток на соленоид.

выключатель зажигания
имеет
возвратная пружина
, так что как только вы отпускаете ключ, он пружинит и выключает стартер.

Когда переключатель подает ток на соленоид, электромагнит притягивает железный стержень.

Движение штока замыкает два тяжелых контакта, замыкая цепь от
аккумулятор
к стартеру.

Шток также имеет возвратную пружину — когда ключ зажигания перестает подавать ток на соленоид, контакты размыкаются и
пусковой двигатель
останавливается.

Возвратные пружины необходимы, потому что стартер не должен вращаться больше, чем необходимо для запуска двигателя. Частично причина в том, что стартер потребляет много электроэнергии, которая быстро разряжает аккумулятор.

Кроме того, если двигатель запускается, а стартер остается включенным, двигатель будет вращать стартер так быстро, что это может быть серьезно повреждено.

Сам стартер имеет устройство, называемое шестерней Bendix, которое взаимодействует своей шестерней с зубчатым венцом на маховике только тогда, когда стартер вращает двигатель. Он отключается, как только двигатель набирает обороты, и это можно сделать двумя способами:
инерция
система и система с предварительным включением.

Инерционный стартер полагается на инерцию шестерни, то есть ее сопротивление вращению.

Система инерции

Стартер инерционного типа: это «внутренний» стартер, в котором шестерня Bendix отбрасывает шестерню в сторону двигателя; есть и «внешние», в которых он движется в другую сторону.

Шестерня не прикреплена жестко к валу двигателя — она ​​навинчивается на него, как свободно вращающаяся гайка на болте с очень крупной резьбой.

Представьте, что вы внезапно закручиваете болт: инерция гайки не дает ей сразу повернуться, поэтому она смещается по резьбе болта.

При вращении инерционного стартера шестерня движется по резьбе вала двигателя и входит в зацепление с зубчатым венцом маховика.

Затем он достигает остановки в конце резьбы, начинает вращаться вместе с валом и, таким образом, вращает двигатель.

Инерция тяжелого поршневого узла предотвращает его немедленное вращение при вращении вала двигателя, поэтому он скользит по резьбе и входит в зацепление; при запуске двигателя шестерня вращается быстрее, чем вал, поэтому она выходит из зацепления.

При запуске двигателя шестерня вращается быстрее, чем вал собственного стартера. Вращающееся действие закручивает шестерню обратно на резьбу и выходит из зацепления.

Шестерня возвращается в исходное положение с такой силой, что на валу должна быть сильная пружина, чтобы смягчить ее удар.

Резкое включение и выключение инерционного стартера может вызвать сильный износ зубьев шестерни. Чтобы решить эту проблему, был введен стартер с предварительным включением, который имеет соленоид, установленный на двигателе.

Автомобильная стартерная система — это еще не все: соленоид не только включает двигатель, но и перемещает шестерню по валу, чтобы зацепить ее.

Вал прямой
шлицы
вместо резьбы Бендикс, чтобы шестерня всегда вращалась вместе с ней.

Шестерня входит в контакт с зубчатым венцом маховика с помощью скользящей вилки.Вилка приводится в движение соленоидом, который имеет два набора контактов, замыкающихся один за другим.

Первый контакт подает слабый ток на двигатель, поэтому он вращается медленно — ровно настолько, чтобы зубья шестерни зацепились. Затем замыкаются вторые контакты, питая двигатель большим током, который запускает двигатель.

как это работает, проблемы, тестирование

Обновлено: 6 мая 2020 г.

Стартер — это электродвигатель, который вращает или «проворачивает» двигатель для запуска.Он состоит из мощного электродвигателя постоянного тока и соленоида стартера, прикрепленного к двигателю (см. Рисунок).

В большинстве автомобилей стартер прикручен к двигателю или трансмиссии, проверьте эти фотографии: фото 1, фото 2. Посмотрите, как стартер работает внутри ниже.

Питание стартера осуществляется от основной 12-вольтовой аккумуляторной батареи автомобиля. Для запуска двигателя стартеру требуется очень высокий электрический ток, а это значит, что аккумулятор должен иметь достаточную мощность.Если аккумулятор разряжен, в автомобиле могут загореться огни, но мощности (тока) недостаточно для включения стартера.

Каковы симптомы неисправного стартера: при запуске автомобиля с полностью заряженным аккумулятором происходит один щелчок или вообще ничего не происходит. Стартер не запускается, хотя на клемме управления стартером подано напряжение 12 В.

Другой симптом — когда стартер работает, но не проверяет двигатель. Часто это может вызвать громкий визг при запуске автомобиля.Конечно, это также может быть вызвано повреждением зубьев коронной шестерни гибкой пластины или маховика.

Соленоид стартера

Соленоид стартера.

Типичный соленоид стартера имеет один маленький разъем для провода управления стартером (белый разъем на фотографии) и две большие клеммы: один для положительного кабеля аккумуляторной батареи, а другой для толстого провода, от которого питается сам стартер (см. диаграмму ниже).

Соленоид стартера работает как мощное электрическое реле. При активации через клемму управления соленоид замыкает сильноточную электрическую цепь и передает питание от аккумулятора на стартер. В то же время соленоид стартера толкает шестерню стартера вперед для зацепления с зубчатым венцом гибкого диска двигателя или маховика.

Реклама — Продолжить чтение ниже

Аккумуляторные кабели

Упрощенная схема системы пуска.

Как мы уже упоминали, стартеру требуется очень высокий электрический ток для включения двигателя, поэтому он подключается к аккумуляторной батарее толстыми (большого сечения) кабелями (см. Схему).
Отрицательный (заземляющий) кабель соединяет отрицательный полюс «» аккумуляторной батареи с блоком цилиндров двигателя или трансмиссией рядом со стартером. Положительный кабель соединяет положительный вывод аккумуляторной батареи « + » с соленоидом стартера.Часто из-за плохого соединения одного из кабелей аккумуляторной батареи стартер не запускается.

Как работает система запуска:

Когда вы поворачиваете ключ зажигания в положение START или нажимаете кнопку START, если коробка передач находится в положении Park или Neutral, напряжение аккумулятора проходит через цепь управления стартером и активирует соленоид стартера. Электромагнит стартера приводит в действие стартер. В то же время соленоид стартера толкает шестерню стартера вперед, чтобы зацепить ее с маховиком двигателя (гибкая пластина в автоматической коробке передач).Маховик прикреплен к коленчатому валу двигателя. Стартер вращается, проворачивая коленчатый вал двигателя, позволяя двигателю запуститься. В автомобилях с кнопочным запуском система отключает стартер, как только двигатель запускается.

Защитный выключатель нейтрали

Переключатель диапазонов АКПП.

По соображениям безопасности стартер может работать только тогда, когда автоматическая коробка передач находится в парковочном или нейтральном положении; или если автомобиль имеет механическую коробку передач, когда педаль сцепления нажата.В автомобилях с механической коробкой передач выключатель педали сцепления замыкает цепь стартера при нажатии. В автомобилях с автоматической коробкой передач переключатель диапазонов трансмиссии позволяет стартеру работать только тогда, когда трансмиссия находится в парковочном или нейтральном положении.

Работа переключателя диапазонов трансмиссии состоит в том, чтобы сообщить бортовому компьютеру (PCM), на какой передаче работает трансмиссия. Если у вашего автомобиля есть индикатор передачи на приборной панели, вы можете увидеть, когда индикатор диапазона трансмиссии не работает. .

Самая распространенная проблема — когда вы переключаете коробку передач в положение «Парковка», а буква «P» не отображается на приборной панели. Это означает, что бортовой компьютер (PCM) не знает, что трансмиссия находится в состоянии «Парковка», и не позволяет стартеру работать. Симптомом этой проблемы является то, что автомобиль заводится в нейтральном режиме, но не заводится в режиме «Парковка».

Эта проблема часто вызвана коррозией или заеданием кабеля или рычага троса (см. Фото). Ржавчина ограничивает движение кабеля и мешает правильной работе переключателя.Решение — смазать место подключения кабеля и, при необходимости, заменить заржавевшие детали. Положение переключателя диапазонов трансмиссии также может потребовать перенастройки.

Проблемы с системой запуска

Проблемы с системой запуска являются обычными, и не все из них вызваны неисправным стартером. Чтобы найти причину проблемы, необходимо правильно протестировать систему запуска. Если при попытке завести машину вы слышите, что стартер заводится как обычно, но машина не заводится, то проблема, скорее всего, в
не с системой запуска — ознакомьтесь с нашим руководством по устранению неполадок при запрете запуска автомобиля, чтобы узнать, как найти проблему.Вот несколько распространенных проблем с системой запуска:

Коррозионная клемма аккумулятора Хорошее соединение

Аккумулятор очень часто выходит из строя. Иногда один из электрических компонентов, который остался включенным или имеет дефект, вызывающий паразитное потребление тока, разряжает аккумулятор. Иногда старая батарея может просто разрядиться в один прекрасный день без предупреждения. В любом случае, если аккумулятор разряжен, у стартера не хватит мощности, чтобы запустить двигатель.

Если аккумулятор разряжен, при попытке запустить двигатель вы можете услышать одиночный щелчок или повторяющиеся щелчки, либо стартер может медленно перевернуться и остановиться.

Плохое соединение на клеммах кабеля может привести к тому, что стартер не будет работать или работать очень медленно. Часто клеммы аккумулятора или соединение заземляющего кабеля корродируют, вызывая проблемы со стартером (см. Фото выше).

Клемма управления соленоида стартера, корродированная

Иногда клемма управления стартером корродирует (на фото), или провод управления стартером ослабляется или отсоединяется от клеммы, в результате чего стартер не работает.Например, эта корродированная клемма управления стартером была причиной отсутствия запуска и проворачивания двигателя в Mazda 3. Мы заметили это только после отсоединения разъема провода управления.
Очистка терминала и замена разъема решили проблему.

Другая деталь, которая часто выходит из строя, — это сам стартер. Иногда угольные щетки или некоторые другие детали внутри стартера изнашиваются, и стартер перестает работать.

Например, отказавший стартер был обычным явлением в некоторых моделях Toyota Corolla и Matrix.Даже при хорошем аккумуляторе стартер щелкал, но не переворачивался.

Если стартер неисправен, его необходимо заменить, что может стоить от 250 до 650 долларов. Восстановление стартера обычно обходится дешевле, но занимает больше времени.

Иногда шестерня стартера по какой-то причине не сцепляется должным образом с маховиком двигателя. Это может вызвать очень громкий скрежет металла или визг при попытке завести автомобиль. В этом случае коронную шестерню маховика необходимо проверить на предмет повреждений зубьев.

Замок зажигания тоже часто выходит из строя. Контактные точки внутри переключателя зажигания изнашиваются, поэтому, когда вы поворачиваете переключатель зажигания в положение «Пуск», электрический ток не проходит через цепь управления стартером, чтобы активировать соленоид стартера. Если покачивание ключа в замке зажигания помогает завести автомобиль, возможно, выключатель зажигания неисправен.

Аварийный выключатель нейтрали также может выйти из строя или выйти из строя. Например, если автомобиль заводится в «Нейтральном» режиме, но не заводится в «Парковке», сначала следует проверить нейтральный предохранительный выключатель.

Как тестируется пусковая система

Техник проверяет состояние заряда аккумулятора
с помощью тестера аккумулятора

Если стартер не работает, сначала необходимо проверить состояние заряда аккумулятора, клеммы аккумулятора и кабели аккумулятора. Одним из симптомов разряда батареи является тусклое освещение приборной панели при повороте ключа в положение START.

Следующим шагом обычно является проверка цепи управления стартером.Ваш механик может начать с измерения напряжения аккумуляторной батареи на клемме управления соленоидом стартера, когда ключ находится в положении START. Если нет напряжения, проблема, скорее всего, в цепи управления стартером (выключатель зажигания, реле стартера, выключатель нейтрали, провод управления). Если на клемме управления соленоидом стартера есть напряжение аккумулятора, когда ключ находится в положении ПУСК, сам стартер может выйти из строя. Клемма управления соленоидом стартера также должна быть проверена на правильность подключения.

Как внутри работает стартер?

Стартер внутри

Стартер обычно имеет четыре обмотки возбуждения (катушки возбуждения), прикрепленные к корпусу стартера изнутри. Якорь (вращающаяся часть) через угольные щетки соединен последовательно с катушками возбуждения.
На переднем конце якоря есть небольшая шестерня, которая прикреплена к якорю через обгонную муфту.

Как работает стартер? Когда водитель поворачивает ключ или нажимает кнопку «Пуск», обмотка соленоида находится под напряжением. Плунжер соленоида перемещается в направлении стрелки и замыкает контакты соленоида. Это подключает питание от батареи к стартеру (катушки возбуждения и якорь). В то же время плунжер толкает шестерню стартера вперед через рычаг. Затем шестерня входит в зацепление с зубчатым венцом гибкого диска и переворачивает его. Гибкая пластина прикреплена к коленчатому валу двигателя.

Большинство проблем стартера вызвано изношенными или сгоревшими контактами соленоида, изношенными щетками и коммутатором, а также изношенными втулками якоря. Признак изношенных контактов соленоида — это когда соленоид щелкает, но стартер не запускается. Когда щетки стартера изношены, стартер не издает шума. Когда втулки переднего и заднего якоря изнашиваются, якорь трется о полевые башмаки, в результате чего стартер работает медленно и шумно. Многие современные стартеры имеют небольшие шарикоподшипники вместо втулок.Если вы хотите отремонтировать стартер, комплекты для восстановления стартера, в которые входят часто изнашиваемые детали, продаются через Интернет.

Технический мир: СИСТЕМА ЗАПУСКА: КОМПОНЕНТЫ И ПРИНЦИПЫ РАБОТЫ

СИСТЕМА ЗАПУСКА: КОМПОНЕНТЫ И ПРИНЦИПЫ РАБОТЫ

Двигатель не может «запускать» вращательное движение самостоятельно. Ему нужен электродвигатель, чтобы разогнать его до минимальных оборотов в минуту, чтобы двигатель мог работать на своей собственной мощности. Стартер — самая большая нагрузка на электрическую систему автомобиля.Мы не можем просто пропустить весь этот ток через выключатель зажигания, в большинстве систем реле используется для активации соленоида стартера, а сам соленоид стартера действует как другое реле для включения стартера (поясняется позже). До появления электростартера автовладельцам нужно было провернуть двигатель самостоятельно! Это не было идеальным местом для быстрого бегства.

Стартер — это электродвигатель, который вращает ваш двигатель, чтобы системы искры и впрыска топлива могли начать работу двигателя самостоятельно.Обычно стартер представляет собой большой электродвигатель и обмотку статора, установленную на дне (обычно с одной стороны) картера трансмиссии транспортного средства, где он соединяется с самим двигателем. У стартера есть шестерни, которые входят в зацепление с большой шестерней маховика на задней стороне двигателя, которая вращает центральный коленчатый вал. Поскольку необходимо преодолеть большой физический вес и трение, стартерные двигатели, как правило, являются мощными, высокоскоростными двигателями и используют катушку зажигания для увеличения мощности перед включением.

КОМПОНЕНТЫ СИСТЕМЫ ЗАПУСКА

1. Аккумулятор

Автомобильный аккумулятор, также известный как свинцово-кислотный аккумулятор, представляет собой электрохимическое устройство, вырабатывающее напряжение и подающее ток. В автомобильном аккумуляторе мы можем обратить электрохимическое действие вспять, тем самым подзаряжая аккумулятор, который будет служить нам многие годы. Батарея предназначена для подачи тока на стартер, подачи тока в систему зажигания при проворачивании коленчатого вала, для подачи дополнительного тока, когда потребность в нем выше, чем может обеспечить генератор, и для работы в качестве электрического резервуара.

2. Выключатель зажигания

Выключатель зажигания позволяет водителю распределять электрический ток туда, где это необходимо. Обычно используются 5 положений переключателя с ключом:

1. Блокировка — все цепи разомкнуты (ток не подается), а рулевое колесо находится в положении блокировки. В некоторых автомобилях рычаг трансмиссии не может быть перемещен в это положение. Если рулевое колесо оказывает давление на запорный механизм, ключ может быть трудно повернуть. Если вы действительно испытываете такое состояние, попробуйте повернуть рулевое колесо, чтобы уменьшить давление при повороте ключа.

2. Выкл. — Все цепи разомкнуты, но рулевое колесо можно повернуть, а ключ не вытащить.

3. Работа — Все цепи, кроме цепи стартера, замкнуты (ток может проходить). Ток подается на все цепи, кроме стартера.

4. Пуск — Питание подается только на цепь зажигания и стартер. Поэтому в исходном положении радио перестает играть. В этом положении переключатель зажигания подпружинен, поэтому стартер не включается при работающем двигателе.Это положение используется на мгновение, просто чтобы активировать стартер.

5. Вспомогательное оборудование — Питание подается на все цепи, кроме цепи зажигания и стартера. Это позволяет включать радио, работать с электрическими стеклоподъемниками и т. Д. При неработающем двигателе.

Большинство выключателей зажигания установлены на рулевой колонке. Некоторые переключатели на самом деле представляют собой две отдельные части;

* Замок, в который вы вставляете ключ. Этот компонент также содержит механизм блокировки рулевого колеса и переключателя передач.

* Переключатель, который содержит фактические электрические цепи. Обычно он устанавливается на верхней части рулевой колонки сразу за приборной панелью и соединяется с замком с помощью рычажного механизма или тяги.

3. Защитный выключатель нейтрали

Этот выключатель размыкает (отключает ток) цепь стартера, когда коробка передач находится на любой передаче, кроме нейтральной или парковочной на автоматических коробках передач. Этот переключатель обычно подключается к рычагу трансмиссии или непосредственно на трансмиссии. В большинстве автомобилей этот же переключатель используется для подачи тока на фары заднего хода при включении заднего хода.Автомобили со стандартной трансмиссией подключают этот переключатель к педали сцепления, чтобы стартер не включился, пока педаль сцепления не будет нажата. Если вы обнаружите, что вам нужно переместить переключатель передач из положения парковки или нейтрали, чтобы автомобиль завелся, обычно это означает, что этот переключатель требует регулировки. Если в вашем автомобиле есть автоматический выключатель стояночного тормоза, аварийный выключатель нейтрального положения также будет управлять этой функцией.

4. Реле стартера

Реле — это устройство, которое позволяет небольшим количеством электрического тока управлять большим током.Автомобильный стартер использует большой ток (250+ ампер) для запуска двигателя. Если бы мы пропустили столько тока через выключатель зажигания, нам бы не только понадобился очень большой выключатель, но и все провода должны были бы быть размером с кабели аккумулятора (что не очень практично). Между аккумулятором и стартером последовательно установлено реле стартера. В некоторых автомобилях используется соленоид стартера для достижения той же цели, позволяя небольшому количеству тока от замка зажигания управлять сильным током, протекающим от батареи к стартеру.Соленоид стартера в некоторых случаях также механически соединяет шестерню стартера с двигателем.

5. Кабели аккумуляторной батареи

Аккумуляторные кабели имеют большой диаметр, это многожильный провод, по которому проходит большой ток (250+ ампер), необходимый для работы стартера. Некоторые имеют меньший провод, припаянный к клемме, который используется либо для управления меньшим устройством, либо для обеспечения дополнительного заземления. Когда меньший кабель горит, это указывает на высокое сопротивление в тяжелом кабеле. Необходимо следить за тем, чтобы концы (клеммы) кабеля аккумуляторной батареи были чистыми и плотно затянутыми.Кабели аккумулятора можно заменить на несколько большего размера, но не меньшего размера.

6. Стартер

Стартер представляет собой мощный электродвигатель с маленькой шестерней (шестерней) на конце. При активации шестерня зацепилась с более крупной шестерней (кольцом), которая прикреплена к двигателю. Затем стартер раскручивает двигатель так, чтобы поршень мог всасывать топливно-воздушную смесь, которая затем воспламеняется для запуска двигателя. Когда двигатель начинает вращаться быстрее стартера, устройство, называемое обгонной муфтой (привод Бендикса), автоматически отключает шестерню стартера от шестерни двигателя.

Детали стартера

1. Соленоид стартера

Соленоид стартера находится в верхней части стартера и выполняет две основные функции: он действует как реле для тяжелых условий эксплуатации для стартера и соединяет шестерню стартера с кольцом. шестерня на маховике / гибкой пластине / гидротрансформаторе. Соленоид имеет 3 вывода; клемма B +, клемма S и клемма M. Клемма B + всегда подключена напрямую к плюсу аккумуляторной батареи. Этот провод наполнен, что означает, что при замыкании этого провода на массу будут искры до тех пор, пока батарея не разрядится.Провод от аккумулятора к клемме B + будет очень толстым, потому что он должен пропускать ток, необходимый для вращения стартера и преодоления компрессии двигателя. Клемма S получает питание от замка зажигания прямо или косвенно через реле. Клемма S подключается к двум обмоткам, втягивающей обмотке и удерживающей обмотке. Эти обмотки представляют собой просто мотки проволоки, намотанные вокруг плунжера, которые при включении создают электромагнит. Втягивающая обмотка состоит из более толстой обмотки и создает сильный электромагнит.Он заземлен через клемму M и стартер. Придерживающая обмотка меньше по размеру и создает более слабый электромагнит. Он заземлен непосредственно на корпус стартера. Плунжер находится в середине обмотки и удерживается пружиной. Плунжер втягивается / удерживается обмоткой, когда они находятся под напряжением. На одном конце он соединен с рычагом, который заставляет ведущую шестерню стартера входить в зацепление с коронной шестерней. На другом конце, когда плунжер достигает конца своего хода, он толкает контактный диск, который соединяет клемму B + с клеммой M, которая подключена к стартеру.Это приводит в действие стартер, а также приводит к прекращению подачи энергии через втягивающую обмотку. Это связано с тем, что после того, как контактный диск соединяет B + с M, на обеих сторонах втягивающей обмотки есть 12 В, и нет заземления. Придерживающая обмотка продолжает пропускать электричество и удерживает плунжер на месте до тех пор, пока ключ не вернется в рабочее положение. Соленоиду нужны обе обмотки, чтобы втягивать плунжер, но только удерживающая обмотка, чтобы удерживать его там. Чтобы сдвинуть плунжер для включения стартера, требуется гораздо больше усилий, чем для его удержания.Поскольку втягивающая обмотка больше не нужна, на ее питание будет только тратить электроэнергию.

2. Стартер

Стартер преобразует электрическую энергию во вращательное движение, используя электромагнетизм или электромагнитное отталкивание. Большинство пускателей, используемых сегодня в автомобилях, представляют собой пускатели с постоянными магнитами. Эти стартеры имеют несколько постоянных магнитов, размещенных внутри корпуса вокруг якоря. Якорь используется для создания электромагнитного поля той же полярности, что и постоянные магниты, заставляя якорь отталкивать магниты.Питание от клеммы M и заземления от корпуса подается на полосу коллектора через щетки. Полоски коммутатора соединены друг с другом через обмотки якоря, это вызывает формирование электромагнитного поля вокруг лент якоря, по которым течет энергия. Если питание подается на полосу коммутатора 1, земля находится на полосе коммутатора 5, мощность должна проходить через полосы якоря 2,3 и 4, чтобы добраться до полосы коммутатора 5. Это создаст магнитное поле вокруг полос якоря 2,3. и 4.Чтобы якорь вращался, постоянный магнит помещают рядом, но не прямо над местом формирования электромагнитного поля. Когда две одинаковые полярности отталкиваются, якорь начинает вращаться. По мере вращения якоря щетки будут контактировать со следующими полосами коммутатора, удерживая электромагнитное поле в одном месте (рядом с постоянным магнитом), но позволяя якорю вращаться. Это то, что создает вращательное движение, необходимое для запуска двигателя. Стартеры также могут иметь планетарный ряд для уменьшения числа оборотов и увеличения крутящего момента на коронной шестерне.В стартерах для тяжелых условий эксплуатации вместо постоянных магнитов используются катушки возбуждения. По сути, они создают оба магнитных поля, используя электромагнетизм, вместо того, чтобы полагаться на постоянные магниты. Эти стартеры намного мощнее стартеров с постоянными магнитами, но они занимают больше места, намного тяжелее и дороже в производстве.

3. Ведущая шестерня стартера

Ведущая шестерня стартера удерживается пружиной в зацеплении с зубчатым венцом до тех пор, пока соленоид стартера не войдет в зацепление и не переместит рычаг, толкая ведущую шестерню стартера в зацепление с зубчатым венцом.Когда двигатель запускается, оператор позволяет ключу вернуться в рабочее положение. Это отключает питание соленоида стартера, что позволяет пружине вернуть плунжер в его нормальное положение. Плунжерный рычаг вытягивает ведущую шестерню стартера назад из зацепления с зубчатым венцом. Важно, чтобы стартер приводил в движение маховик, а не наоборот. Вот почему стартерные приводы имеют одностороннюю муфту. Обгонная муфта позволяет стартеру вращать маховик, но если маховик начинает заставлять шестерню стартера вращаться быстрее, чем якорь, односторонняя муфта проскальзывает.Это предохраняет стартер от слишком быстрого вращения.

ПРИНЦИПЫ РАБОТЫ

Чтобы запустить двигатель, его необходимо повернуть на некоторой скорости, чтобы он всасывал топливо и воздух в цилиндры и сжимал их.

Вращает мощный электрический стартер. Его вал несет небольшую шестерню (шестерню), которая входит в зацепление с большим зубчатым венцом вокруг обода маховика двигателя.

В варианте с передним расположением двигателя стартер установлен низко рядом с задней частью двигателя.

Стартеру нужен сильный электрический ток, который он отводит от аккумулятора по толстым проводам. Никакой обычный ручной выключатель не может включить его: для работы с большим током нужен большой выключатель.

Выключатель должен включаться и выключаться очень быстро, чтобы избежать опасного, опасного искрения. Таким образом, используется соленоид — устройство, в котором небольшой переключатель включает электромагнит, замыкая цепь.

Выключатель стартера обычно приводится в действие ключом зажигания.Поверните ключ за пределы положения «зажигание включено», чтобы подать ток на соленоид.

Замок зажигания имеет возвратную пружину, так что как только вы отпускаете ключ, он возвращается в исходное положение и выключает стартер.

Когда переключатель подает ток на соленоид, электромагнит притягивает железный стержень.

Движение штока замыкает два тяжелых контакта, замыкая цепь от аккумулятора до стартера.

Шток также имеет возвратную пружину — когда ключ зажигания перестает подавать ток на соленоид, контакты размыкаются и стартер останавливается.

Возвратные пружины необходимы, потому что стартер не должен вращаться больше, чем необходимо для запуска двигателя. Частично причина в том, что стартер потребляет много электроэнергии, которая быстро разряжает аккумулятор.

Кроме того, если двигатель запускается, а стартер остается включенным, двигатель будет вращать стартер так быстро, что он может быть серьезно поврежден.

Сам стартер имеет устройство, называемое шестерней Bendix, которое взаимодействует своей шестерней с зубчатым венцом на маховике только тогда, когда стартер вращает двигатель.Он отключается, как только двигатель набирает обороты, и есть два способа сделать это — система инерции и система предварительного включения.

Инерционный стартер полагается на инерцию шестерни, то есть ее сопротивление вращению.

Шестерня не закреплена жестко на валу двигателя — она ​​навинчивается на него, как свободно вращающаяся гайка на болте с очень крупной резьбой.

Представьте, что вы внезапно закручиваете болт: инерция гайки не дает ей сразу повернуться, поэтому она смещается по резьбе болта.

При вращении инерционного стартера шестерня движется по резьбе вала двигателя и входит в зацепление с зубчатым венцом маховика.

Затем он достигает остановки в конце резьбы, начинает вращаться вместе с валом и, таким образом, вращает двигатель.

При запуске двигателя шестерня вращается быстрее, чем вал собственного стартера. Вращающееся действие закручивает шестерню обратно на резьбу и выходит из зацепления.

Шестерня возвращается в исходное положение с такой силой, что на валу должна быть сильная пружина, чтобы смягчить ее удар.

Резкое включение и выключение инерционного стартера может вызвать сильный износ зубьев шестерни. Чтобы решить эту проблему, был введен стартер с предварительным включением, который имеет соленоид, установленный на двигателе.

Автомобильная стартерная система — это еще не все: соленоид не только включает двигатель, но и перемещает шестерню по валу, чтобы зацепить ее.

Вал имеет прямые шлицы, а не резьбу Бендикса, поэтому шестерня всегда вращается вместе с ней.

Шестерня приводится в контакт с зубчатым кольцом маховика с помощью скользящей вилки.Вилка приводится в движение соленоидом, который имеет два набора контактов, замыкающихся один за другим.

Первый контакт подает слабый ток на двигатель, поэтому он медленно вращается — ровно настолько, чтобы зубья шестерни зацепились. Затем замыкаются вторые контакты, питая двигатель большим током, который запускает двигатель.

Стартер предотвращает превышение скорости, когда двигатель запускается с помощью муфты свободного хода, как на велосипеде. Возвратная пружина соленоида выводит шестерню из зацепления.

Системы запуска поршневых двигателей для самолетов

Системы пуска поршневых двигателей На ранних этапах развития самолетов относительно маломощные поршневые двигатели запускались путем вытягивания пропеллера вручную на часть оборота. В холодную погоду часто возникали трудности с запуском, когда температура смазочного масла была близка к точке застывания. Кроме того, магнито-системы давали слабую пусковую искру при очень низких скоростях проворачивания.Это часто компенсировалось созданием горячей искры с использованием таких устройств системы зажигания, как бустерная катушка, индукционный вибратор или импульсная связь.

Некоторые небольшие маломощные самолеты, в которых для запуска используется ручной запуск пропеллера или подпорка, все еще эксплуатируются. На протяжении всей разработки авиационного поршневого двигателя с самого начала использования пусковых систем до настоящего времени использовался ряд различных стартерных систем. Большинство стартеров поршневых двигателей — электрические с прямым запуском.Несколько старых моделей самолетов до сих пор оснащены инерционными стартерами. Таким образом, на эту страницу включено только краткое описание этих стартовых систем.

Инерционные пускатели

Существует три основных типа инерционных пускателей: ручные, электрические и комбинированные ручные и электрические. Работа всех типов инерционных пускателей зависит от кинетической энергии, накопленной в быстро вращающемся маховике для проворачивания. Кинетическая энергия — это энергия, которой обладает тело в силу своего состояния движения, которое может быть движением по линии или вращением.В инерционном пускателе энергия медленно накапливается во время процесса включения ручным пускателем или электрически с помощью небольшого двигателя. Маховик и подвижные шестерни комбинированного ручного электрического инерционного стартера показаны на рисунке 1.

Рисунок 1. Комбинированный ручной и электрический инерционный пускатель

Электрическая схема электрического инерционного стартера показана на рисунке 2. Во время включения стартера все движущиеся части внутри него, включая маховик, приводятся в движение.После того, как стартер был полностью запитан, он соединяется с коленчатым валом двигателя с помощью троса, протянутого вручную, или зацепляющего соленоида, который находится под напряжением. Когда стартер включен или зацеплен, энергия маховика передается двигателю через комплекты редукторов и муфту отключения по крутящему моменту. [Рисунок 3]

Рисунок 2. Электрическая инерционная пусковая цепь

Рисунок 3.Муфта отключения по крутящему моменту

Электростартер поршневого двигателя прямого запуска

Наиболее широко используемая система запуска на всех типах поршневых двигателей использует электрический стартер с прямым запуском. Этот тип стартера обеспечивает мгновенный и непрерывный запуск двигателя под напряжением. Электростартер с прямым запуском состоит в основном из электродвигателя, редукторов и механизма автоматического включения и выключения, который приводится в действие с помощью регулируемой муфты выключения перегрузки по крутящему моменту.Типичная схема электрического стартера с прямым запуском показана на рисунке 4. Двигатель запускается непосредственно при замкнутом соленоиде стартера. Как показано на Рисунке 4, основные кабели, идущие от стартера к батарее, имеют большую нагрузку на протекание большого тока, который может находиться в диапазоне от 350 до 100 ампер (ампер), в зависимости от пускового момента. обязательный. Использование соленоидов и толстой проводки с переключателем дистанционного управления снижает общий вес кабеля и общее падение напряжения в цепи.

Рисунок 4. Типовая схема пуска с использованием электрического стартера прямого запуска

Типичный стартер — это 12- или 24-вольтовый двигатель с последовательной обмоткой, развивающий высокий пусковой момент. Крутящий момент двигателя передается через редукторы на предохранительную муфту. Обычно это действие приводит в действие вал со спиральными шлицами, перемещающий губку стартера наружу, чтобы зацепить губку запуска двигателя, прежде чем губка стартера начнет вращаться.После того, как двигатель наберет заданную скорость, стартер автоматически отключается. Схема на рисунке 5 представляет собой схематическое изображение всей системы запуска для легкого двухмоторного самолета.

Рис. 5. Схема запуска двигателя легкого двухмоторного самолета

Система электрического запуска с прямым запуском для больших поршневых двигателей

В типичном высокомощном поршневом двигателе для запуска основные компоненты: двигатель в сборе и зубчатая передача.Зубчатая передача прикреплена болтами к приводному концу двигателя, образуя единый блок.

Узел двигателя состоит из узла якоря и шестерни двигателя, узла концевого раструба и узла корпуса двигателя. Корпус двигателя также действует как магнитное ярмо для структуры поля.

Стартер — это нереверсивный межполюсный двигатель. Его скорость напрямую зависит от приложенного напряжения и обратно пропорционально нагрузке. Секция шестерни стартера состоит из внешнего корпуса со встроенным монтажным фланцем, планетарного редуктора, узла солнечной и встроенной шестерен, муфты ограничения крутящего момента и узла кулачка и конуса.[Рис. 6] Когда цепь стартера замкнута, крутящий момент, развиваемый в стартере, передается на челюсть стартера через редуктор и муфту.

Рисунок 6. Зубчатая передача стартера

Зубчатая передача стартера преобразует высокоскоростной низкий крутящий момент двигателя в высокий крутящий момент на низкой скорости, необходимый для запуска двигателя. В зубчатой ​​части шестерня двигателя входит в зацепление с шестерней промежуточного промежуточного вала.[Рис. 6] Шестерня промежуточного вала входит в зацепление с внутренней шестерней. Внутренняя шестерня является неотъемлемой частью солнечной шестерни в сборе и жестко прикреплена к валу солнечной шестерни. Солнечная шестерня приводит в движение три планетарных шестерни, которые являются частью планетарной шестерни. Отдельные валы планетарной шестерни поддерживаются несущим планетарным рычагом, бочкообразной частью, показанной на Рисунке 6. Несущий рычаг передает крутящий момент от планетарных шестерен к кулачку стартера:

  1. Цилиндрическая часть несущего рычага имеет продольные шлицы вокруг внутренней поверхности.
  2. На наружной поверхности цилиндрической части кулачка стартера нарезаны ответные шлицы.
  3. Зажим скользит вперед и назад внутри несущего рычага, чтобы войти в зацепление с двигателем и расцепить его.

Три планетарных шестерни также входят в зацепление с окружающими внутренними зубьями на шести стальных дисках сцепления. [Рис. 6] Эти пластины чередуются с бронзовыми дисками сцепления с наружными шлицами, которые входят в зацепление со сторонами корпуса, предотвращая их вращение. Надлежащее давление в пакете сцепления поддерживается узлом фиксатора пружины сцепления.Цилиндрическая ходовая гайка внутри губки стартера выдвигает и втягивает губку. Спиральные шлицы для зацепления кулачков вокруг внутренней стенки гайки сопрягаются с аналогичными шлицами, нарезанными на продолжении вала солнечной шестерни. [Рисунок 6]

Будучи нарезанным таким образом, вращение вала выталкивает гайку, и гайка увлекает за собой губку. Пружина губки вокруг ходовой гайки удерживает губку с гайкой и стремится удерживать коническую поверхность муфты вокруг внутренней стенки головки губки, прилегающей к аналогичной поверхности вокруг нижней стороны головки гайки.Возвратная пружина установлена ​​на удлинении вала солнечной шестерни между заплечиком, образованным шлицами вокруг внутренней стенки ходовой гайки, и стопорной гайкой упора кулачков на конце вала. Поскольку конические поверхности муфты ходовой гайки и кулачка стартера входят в зацепление за счет давления пружины кулачка, две части имеют тенденцию вращаться с одинаковой скоростью. Однако удлинитель вала солнечной шестерни вращается в шесть раз быстрее, чем кулачок. Спиральные шлицы на нем нарезаны с левой стороны, и удлинитель вала солнечной шестерни, поворачиваясь вправо по отношению к кулачку, выталкивает ходовую гайку и кулачок из стартера на полный ход (около 5⁄16 дюйма) примерно на 12 ° поворот челюсти.

Губка выдвигается до тех пор, пока она не будет остановлена ​​либо за счет зацепления с двигателем, либо стопорной гайкой упора губки. Ходовая гайка продолжает немного перемещаться за предел хода кулачка, достаточного для того, чтобы ослабить давление пружины на конические поверхности муфты. Пока стартер продолжает вращаться, на конические поверхности муфты оказывается достаточно давления, чтобы обеспечить крутящий момент на спиральных шлицах, которые уравновешивают большую часть давления пружины кулачка. Если двигатель не запускается, губка стартера не втягивается, поскольку механизм стартера не обеспечивает силы втягивания.Однако, когда двигатель запускается и кулачок двигателя выходит за пределы кулачка стартера, наклонные наклоны зубьев кулачка заставляют кулачок стартера вжиматься в стартер, преодолевая давление пружины кулачка. Это полностью разъединяет конические поверхности сцепления, и давление пружины зажима заставляет ходовую гайку скользить по спиральным шлицам до тех пор, пока конические поверхности сцепления снова не войдут в контакт.

Когда стартер и двигатель работают, возникает сила зацепления, удерживающая губки в контакте, которая продолжается до тех пор, пока стартер не будет обесточен.Однако быстро движущиеся зубья челюсти двигателя, ударяясь о медленно движущиеся зубья челюсти стартера, удерживают губку стартера в выключенном состоянии. Как только стартер останавливается, сила зацепления снимается, и малая возвратная пружина переводит губку стартера в полностью втянутое положение, где она остается до следующего запуска. Когда кулачок стартера впервые входит в контакт с кулачком двигателя, якорь двигателя успевает набрать значительную скорость из-за высокого пускового момента. Внезапное зацепление подвижной губки стартера с неподвижной губкой двигателя привело бы к развитию достаточно больших сил, чтобы серьезно повредить двигатель или стартер, если бы диски в пакете сцепления не проскальзывали, когда крутящий момент двигателя превышает момент проскальзывания сцепления.

При нормальном прямом проворачивании коленчатого вала внутренние стальные зубчатые диски сцепления удерживаются неподвижно за счет трения бронзовых дисков, с которыми они чередуются. Однако, когда крутящий момент, создаваемый двигателем, превышает настройку муфты, диски муфты с внутренним зацеплением вращаются против трения муфты, позволяя планетарным шестерням вращаться, в то время как планетарный рычаг и кулачок остаются неподвижными. Когда двигатель достигает скорости, которую пытается достичь стартер, крутящий момент падает до значения, меньшего, чем настройка сцепления, диски муфты с внутренним зубчатым колесом снова удерживаются в неподвижном состоянии, а губка вращается со скоростью, которую пытается достичь двигатель. води его.Выключатели управления стартером схематически показаны на Рисунке 7.

Рисунок 7. Цепь управления стартером

Селекторный переключатель двигателя должен быть установлен в положение, а переключатель стартера и выключатель безопасности, соединенные последовательно, должны быть замкнуты, прежде чем можно будет включить стартер. Ток подается в цепь управления стартером через автоматический выключатель с надписью «Стартер, праймер и индукционный вибратор».”[Рис. 7] Когда селекторный переключатель двигателя находится в положении для запуска двигателя, при включении стартера активируется реле стартера, расположенное в области гондолы двигателя. Подача напряжения на реле стартера замыкает цепь питания стартера. Ток, необходимый для такой большой нагрузки, снимается непосредственно с главной шины через кабель шины стартера.

Все системы запуска имеют ограничения по времени работы из-за высокой энергии, используемой при запуске или вращении двигателя. Эти ограничения называются пределами стартера и должны соблюдаться, иначе произойдет перегрев и повреждение стартера.После подачи питания на стартер в течение 1 минуты ему следует дать остыть не менее 1 минуты. После второго или последующего периода проворачивания в течение 1 минуты он должен остыть в течение 5 минут.

Система электрического запуска с прямым запуском для малых самолетов

В большинстве небольших самолетов с поршневым двигателем используется электрическая система запуска с прямым запуском. Некоторые из этих систем запускаются автоматически, другие запускаются вручную. В системах запуска с ручным включением, используемых на многих старых небольших самолетах, используется приводная шестерня обгонной муфты с ручным управлением для передачи мощности от электродвигателя стартера на ведущую шестерню стартера коленчатого вала.[Рис. 8] Ручка или ручка на приборной панели соединена гибким элементом управления с рычагом на стартере. Этот рычаг переводит ведущую шестерню стартера в положение включения и замыкает контакты переключателя стартера при нажатии на ручку или ручку стартера.

Рисунок 8. Регуляторы и регулировка уровня стартера

Рычаг стартера прикреплен к возвратной пружине, которая возвращает рычаг и гибкий регулятор в выключенное положение.Когда двигатель запускается, обгонное действие муфты защищает ведущую шестерню стартера до тех пор, пока рычаг переключения передач не может быть отпущен для расцепления шестерни. Для типичного агрегата существует указанная длина хода шестерни стартера. [Рис. 8] Важно, чтобы рычаг стартера переместил ведущую шестерню стартера на это надлежащее расстояние до того, как регулируемая шпилька рычага коснется переключателя стартера.

В системах автоматического запуска или запуска с дистанционным соленоидом используется электрический стартер, установленный на адаптере двигателя.Электромагнит стартера активируется нажатием кнопки или поворотом ключа зажигания на панели приборов. Когда соленоид активирован, его контакты замыкаются, и электрическая энергия питает стартер. Начальное вращение стартера включает стартер через обгонную муфту в адаптере стартера, который включает червячные редукторы.

Некоторые двигатели оснащены системой автоматического запуска, в которой используется электрический стартер, установленный на адаптере привода под прямым углом.Поскольку стартер находится под напряжением, червячный вал адаптера и шестерня входят в зацепление с шестерней вала стартера посредством пружины и муфты в сборе. Вал-шестерня, в свою очередь, вращает коленчатый вал. Когда двигатель начинает работать самостоятельно, пружина сцепления выходит из зацепления с шестерней вала. В адаптере стартера используется вал червячной шестерни и червячная передача для передачи крутящего момента от стартера к муфте в сборе. [Рис. 9] Когда червячная передача вращает червячное колесо и пружину сцепления, пружина сцепления сжимается вокруг барабана шестерни вала стартера.При вращении шестерни вала крутящий момент передается непосредственно на шестерню коленчатого вала.

Рисунок 9. Адаптер стартера

В других двигателях используется стартер, который приводит в движение коронную шестерню, установленную на ступице гребного винта. [Рис. 10] В нем используется электродвигатель и ведущая шестерня, которая включается, когда двигатель находится под напряжением, и вращает шестерню, которая выдвигается и входит в зацепление с зубчатым венцом на ступице гребного винта, проворачивая двигатель для запуска.

Рис. 10. Кольцевая шестерня стартера, установленная на ступице гребного винта

[Рис. ведущая шестерня. [Рис. 12] Стартерные двигатели на небольших самолетах также имеют эксплуатационные ограничения с временем охлаждения, которое следует соблюдать.

Рисунок 11. Монтажные отверстия ведущей шестерни стартера и электрический разъем

Рисунок 12. Стартер двигателя, установленный на двигателе

СВЯЗАННЫЕ ЗАПИСИ
Введение в систему запуска

СИСТЕМА ЗАПУСКА: КОМПОНЕНТЫ И… — Механическая информация

СИСТЕМА ЗАПУСКА: КОМПОНЕНТЫ И КАК ЭТО РАБОТАЕТ

Стартер — это электродвигатель, который вращает ваш двигатель, чтобы системы искры и впрыска топлива могли начать работу двигателя от собственной мощности. Обычно стартер представляет собой большой электродвигатель и обмотку статора, установленную на дне (обычно с одной стороны) картера трансмиссии транспортного средства, где он соединяется с самим двигателем. У стартера есть шестерни, которые входят в зацепление с большой шестерней маховика на задней стороне двигателя, которая вращает центральный коленчатый вал.Поскольку необходимо преодолеть большой физический вес и трение, стартерные двигатели, как правило, являются мощными, высокоскоростными двигателями и используют катушку зажигания для увеличения мощности перед включением.

Компоненты системы запуска

1. Аккумулятор

Автомобильный аккумулятор, также известный как свинцово-кислотная аккумуляторная батарея, представляет собой электрохимическое устройство, вырабатывающее напряжение и подающее ток. В автомобильном аккумуляторе мы можем обратить электрохимическое действие вспять, тем самым перезарядив аккумулятор, что обеспечит нам долгие годы службы.Батарея предназначена для подачи тока на стартер, подачи тока в систему зажигания при проворачивании коленчатого вала, для подачи дополнительного тока, когда потребность в нем выше, чем может обеспечить генератор, и для работы в качестве электрического резервуара.

2. Выключатель зажигания

Выключатель зажигания позволяет водителю распределять электрический ток туда, где это необходимо. Обычно используются 5 положений переключателя с ключом:

1. Блокировка — все цепи разомкнуты (ток не подается), а рулевое колесо находится в положении блокировки.В некоторых автомобилях рычаг трансмиссии не может быть перемещен в это положение. Если рулевое колесо оказывает давление на запорный механизм, ключ может быть трудно повернуть. Если вы действительно испытываете такое состояние, попробуйте повернуть рулевое колесо, чтобы уменьшить давление при повороте ключа.
2. Выкл. — Все цепи разомкнуты, но рулевое колесо можно повернуть, а ключ не вытащить.
3. Работа — Все цепи, кроме цепи стартера, замкнуты (ток может проходить).Ток подается на все цепи, кроме стартера.
4. Пуск — Питание подается только на цепь зажигания и стартер. Поэтому в исходном положении радио перестает играть. Это положение переключателя зажигания подпружинено, поэтому стартер не включается при работающем двигателе. Это положение используется на мгновение, просто чтобы активировать стартер.
5. Вспомогательное оборудование — Питание подается на все цепи, кроме цепи зажигания и стартера. Это позволяет включать радио, работать с электрическими стеклоподъемниками и т. Д.пока двигатель не работает.

Большинство выключателей зажигания установлены на рулевой колонке. Некоторые переключатели на самом деле представляют собой две отдельные части;

* Замок, в который вы вставляете ключ. Этот компонент также содержит механизм блокировки рулевого колеса и переключателя передач.
* Переключатель, который содержит фактические электрические цепи. Обычно он устанавливается на верхней части рулевой колонки сразу за приборной панелью и соединяется с замком с помощью рычажного механизма или тяги.

3. Защитный выключатель нейтрального положения

Этот выключатель размыкает (отключает ток) цепь стартера, когда коробка передач находится на любой передаче, кроме нейтральной или парковочной на автоматических коробках передач.Этот переключатель обычно подключается к рычагу трансмиссии или непосредственно на трансмиссии. В большинстве автомобилей этот же переключатель используется для подачи тока на фонари заднего хода при включении передачи заднего хода. Автомобили со стандартной трансмиссией подключают этот переключатель к педали сцепления, чтобы стартер не включился, пока педаль сцепления не будет нажата. Если вы обнаружите, что вам нужно переместить переключатель передач из положения парковки или нейтрали, чтобы автомобиль завелся, обычно это означает, что этот переключатель требует регулировки.Если в вашем автомобиле есть автоматический выключатель стояночного тормоза, аварийный выключатель нейтрального положения также будет управлять этой функцией.

4. Реле стартера

Реле — это устройство, которое позволяет небольшим количеством электрического тока управлять большим током. Автомобильный стартер использует большой ток (250+ ампер) для запуска двигателя. Если бы мы пропустили столько тока через выключатель зажигания, нам бы не только понадобился очень большой выключатель, но и все провода должны были бы быть размером с кабели аккумулятора (что не очень практично).Между аккумулятором и стартером последовательно установлено реле стартера. В некоторых автомобилях используется соленоид стартера для достижения той же цели, позволяя небольшому количеству тока от замка зажигания управлять сильным током, протекающим от батареи к стартеру. Соленоид стартера в некоторых случаях также механически соединяет шестерню стартера с двигателем.

5. Кабели аккумуляторных батарей

Аккумуляторные кабели представляют собой многожильные провода большого диаметра, по которым протекает большой ток (250+ ампер), необходимый для работы стартера.Некоторые имеют меньший провод, припаянный к клемме, который используется либо для управления меньшим устройством, либо для обеспечения дополнительного заземления. Когда меньший кабель горит, это указывает на высокое сопротивление в тяжелом кабеле. Необходимо следить за тем, чтобы концы (клеммы) кабеля аккумуляторной батареи были чистыми и плотно затянутыми. Кабели аккумулятора можно заменить на несколько большего размера, но не меньшего размера.

6. Стартер

Стартер представляет собой мощный электродвигатель с небольшой шестерней (шестерней) на конце.При активации шестерня входит в зацепление с более крупной шестерней (кольцом), которая прикреплена к двигателю. Затем стартер раскручивает двигатель так, чтобы поршень мог всасывать топливно-воздушную смесь, которая затем воспламеняется для запуска двигателя. Когда двигатель начинает вращаться быстрее стартера, устройство, называемое обгонной муфтой (привод бендикса), автоматически отключает шестерню стартера от шестерни двигателя.

Принцип работы.

Для запуска двигателя его необходимо повернуть на некоторой скорости, чтобы он всасывал топливо и воздух в цилиндры и сжимал их.

Вращает мощный электрический стартер. Его вал несет небольшую шестерню (шестерню), которая входит в зацепление с большим зубчатым венцом вокруг обода маховика двигателя.

В варианте с передним расположением двигателя стартер установлен низко рядом с задней частью двигателя.

Стартеру нужен сильный электрический ток, который он отводит от аккумулятора по толстым проводам. Никакой обычный ручной выключатель не может включить его: для работы с большим током нужен большой выключатель.

Выключатель должен включаться и выключаться очень быстро, чтобы избежать опасного, опасного искрения. Таким образом, используется соленоид — устройство, в котором небольшой переключатель включает электромагнит, замыкая цепь.

Выключатель стартера обычно приводится в действие ключом зажигания. Поверните ключ за пределы положения «зажигание включено», чтобы подать ток на соленоид.

Замок зажигания имеет возвратную пружину, так что как только вы отпускаете ключ, он возвращается в исходное положение и выключает стартер.

Когда переключатель подает ток на соленоид, электромагнит притягивает железный стержень.

Движение штока замыкает два тяжелых контакта, замыкая цепь от аккумулятора до стартера.

Шток также имеет возвратную пружину — когда ключ зажигания перестает подавать ток на соленоид, контакты размыкаются и стартер останавливается.

Возвратные пружины необходимы, потому что стартер не должен вращаться больше, чем необходимо для запуска двигателя.Частично причина в том, что стартер потребляет много электроэнергии, которая быстро разряжает аккумулятор.

Кроме того, если двигатель запускается, а стартер остается включенным, двигатель будет вращать стартер так быстро, что он может быть серьезно поврежден.

Сам стартер имеет устройство, называемое шестерней Bendix, которое взаимодействует своей шестерней с зубчатым венцом на маховике только тогда, когда стартер вращает двигатель. Он отключается, как только двигатель набирает обороты, и есть два способа сделать это — система инерции и система предварительного включения.

Инерционный стартер полагается на инерцию шестерни, то есть ее сопротивление вращению.

Шестерня не закреплена жестко на валу двигателя — она ​​навинчивается на него, как свободно вращающаяся гайка на болте с очень крупной резьбой.

Представьте, что вы внезапно закручиваете болт: инерция гайки не дает ей сразу повернуться, поэтому она смещается по резьбе болта.

При вращении инерционного стартера шестерня движется по резьбе вала двигателя и входит в зацепление с зубчатым венцом маховика.

Затем он достигает остановки в конце резьбы, начинает вращаться вместе с валом и, таким образом, вращает двигатель.

При запуске двигателя шестерня вращается быстрее, чем вал собственного стартера. Вращающееся действие закручивает шестерню обратно на резьбу и выходит из зацепления.

Шестерня возвращается в исходное положение с такой силой, что на валу должна быть сильная пружина, чтобы смягчить ее удар.

Резкое включение и выключение инерционного стартера может вызвать сильный износ зубьев шестерни.Чтобы решить эту проблему, был введен стартер с предварительным включением, который имеет соленоид, установленный на двигателе.

Автомобильная стартерная система — это еще не все: соленоид не только включает двигатель, но и перемещает шестерню по валу, чтобы зацепить ее.

Вал имеет прямые шлицы, а не резьбу Бендикса, поэтому шестерня всегда вращается вместе с ней.

Шестерня приводится в контакт с зубчатым кольцом маховика с помощью скользящей вилки. Вилка приводится в движение соленоидом, который имеет два набора контактов, замыкающихся один за другим.

Первый контакт подает слабый ток на двигатель, поэтому он медленно вращается — ровно настолько, чтобы зубья шестерни зацепились. Затем замыкаются вторые контакты, питая двигатель большим током, который запускает двигатель.

Стартер предохраняется от превышения скорости, когда двигатель запускается с помощью муфты свободного хода, например, обгонной муфты велосипеда. Возвратная пружина соленоида выводит шестерню из зацепления.

Важность пусковых систем

Важность пусковых систем Функциональной машине нужен работающий двигатель, и если двигатель
не заводится, не заводится.Правильно работающая и надежная система запуска является обязательным условием для поддержания производительности машины.

В течение многих лет в дизельных двигателях в основном использовались электродвигатели, чтобы проворачивать их и запускать процесс сгорания. В некоторых случаях пневматический или гидравлический двигатель создает крутящий момент, необходимый для вращения двигателя.

Много лет назад дизельные двигатели иногда запускали с меньшего газового двигателя, называемого двигателем для детей. ● См. Рис. 7–1, на котором изображен цилиндрический двигатель более старого дизельного двигателя. Другой способ запустить дизельный двигатель — это запустить его на бензине, а затем переключить на дизельное топливо.Это было сложное решение простой задачи, потому что двигатель должен был иметь возможность изменять степень сжатия, а также требовались система искрового зажигания и карбюратор. По мере того, как электрические системы на 12 В становились все более популярными, а конструкция электродвигателей улучшалась, электрические стартеры могли выполнять свою работу. Многие большие дизельные двигатели будут использовать систему запуска 24 В для еще большей мощности запуска. ● См. Рисунок
на рис. 7–2, где показано типичное расположение мощного электростартера на дизельном двигателе.

Дизельный двигатель для запуска должен иметь скорость от 150 до 250 об / мин.Система запуска предназначена для обеспечения крутящего момента, необходимого для достижения необходимой минимальной скорости вращения коленчатого вала. Когда стартер начинает вращать маховик, коленчатый вал поворачивается, что затем начинает движение поршня. Для
Небольшой четырехцилиндровый двигатель не требует большого крутящего момента, создаваемого стартером. Но по мере того, как двигатели получают больше цилиндров и поршней, потребуется огромный крутящий момент, чтобы получить требуемую скорость вращения коленчатого вала. Некоторые мощные стартеры на 24 В создают крутящий момент более 200 фунт-сила-футов.Затем этот крутящий момент умножается на коэффициент редукции между ведущей шестерней стартера и коронной шестерней на маховике двигателя. Обычно это около 20: 1. ● На рис. 7–3 показано, как
шестерня узла стартера входит в зацепление с зубчатым венцом маховика.

Некоторым более крупным двигателям для этого потребуется два или более стартера. Некоторые стартеры для больших дизельных двигателей развивают мощность более 15 кВт или 20 л.с.! ● См. Рисунок 7–4 для схемы двойного стартера.

Когда стартер начинает переворачивать двигатель, его поршни начинают двигаться вверх в цилиндрах на такте сжатия.В верхней части поршня должно создаваться давление от 350 до 600 фунтов на квадратный дюйм. Это основное сопротивление, которое должен преодолеть стартер. Это давление и нужно
для создания необходимого тепла в цилиндре, чтобы при впрыске топлива он воспламенился. Если система запуска не может запустить двигатель достаточно быстро, тогда давление сжатия и тепло не будут достаточно высокими для воспламенения топлива. Если поршни двигаются слишком медленно, будет время для утечки компрессии через поршневые кольца.Кроме того, кольца не будут прижиматься к цилиндру, что снова позволяет давлению сжатия попадать в картер. В этом случае двигатель не запускается или запускается с неполным сгоранием. Неполное сгорание означает чрезмерные выбросы. Это еще одна причина иметь правильно работающую стартовую систему.

Чем быстрее стартер запускает дизельный двигатель, тем быстрее он запускается и быстрее работает без очистки.

Эта задача запуска двигателя намного сложнее при более низких температурах, особенно если двигатель напрямую приводит в действие другие компоненты машины, такие как гидравлические насосы, преобразователь крутящего момента или карданный вал отбора мощности.Холодное моторное масло увеличивает нагрузку на стартер, и эта нагрузка может увеличиться в три-четыре раза по сравнению с обычной в более теплую погоду. Моторное масло, вязкость которого не соответствует температуре (слишком густое), значительно увеличивает сопротивление качению двигателя.
Проблема усугубляется тем, что батарея менее эффективна при низких температурах.

Когда инженеры проектируют систему запуска, они должны учитывать условия запуска в холодную погоду и довольно часто предлагают вариант запуска в холодную погоду.Скорее всего, это будет включать в себя
одно или несколько из следующего: батареи большего размера или больше, стартер с более высокой выходной мощностью, кабели батареи большего размера, защитные кожухи батареи, масляные нагреватели, дизельный нагреватель охлаждающей жидкости, электрический погружной нагреватель охлаждающей жидкости (блочный нагреватель) и один или несколько пусковых устройств. такие вспомогательные средства, как система впрыска эфира или входной нагреватель.

Еще одна недавняя проблема, добавленная к системам запуска, связана с электронным управлением на некоторых двигателях. Некоторым модулям управления двигателем может потребоваться определить минимальное количество оборотов двигателя на минимальной скорости, прежде чем он включит питание топливной системы.Это означает более длительное время запуска и большую нагрузку на систему запуска. Некоторые двигатели с электронным управлением будут проворачиваться на пять секунд или дольше, даже когда двигатель теплый, до того, как ECM начнет впрыск топлива и двигатель запустится.

Важно, чтобы система запуска машины работала должным образом, и вы должны знать, как работают основные компоненты системы. Это даст вам знания, необходимые для правильной диагностики, когда вы получите жалобу на то, что двигатель запускается медленно или совсем не запускается.

Если двигатель не запускается, значит, машина не работает,
и вместо того, чтобы зарабатывать деньги, она стоит денег. Чем лучше вы знаете, как диагностировать и устранять неполадки в системе запуска, тем более ценным вы будете как HDET. Есть много техников, которые умеют менять стартеры независимо от того, неисправен стартер или нет. Часто причиной жалоб на запуск не является стартер.

При правильном использовании стартера его хватит на более чем 10 000 пусков.Самым большим фактором сокращения срока службы электростартера является перегрев из-за чрезмерного проворачивания коленчатого вала. Никогда не запускайте стартер более чем на 30 секунд, и если он действительно работает так долго, подождите не менее двух минут между кривошипами, чтобы дать стартеру
остыть.

Для двигателей мощностью до 500 л.с. системы электрического запуска будут использоваться в 99% случаев. Для двигателя любого размера возможна установка пневматической и гидравлической систем запуска; однако они, вероятно, будут использоваться только для специальных применений и обычно для двигателей мощностью более 500 л.

Leave a Reply

Your email address will not be published.Required fields are marked *

*