Что такое система впрыска топлива автомобиля и как работает (основы)
Впрыск топлива автомобиля — это система дозированной подачи топлива в цилиндры двигателя. Расскажем про электронные системы подачи топлива, как работают и из каких датчиков состоят.
Как работает
На рисунке схематично показан принцип работы распределенного впрыска.
Подача воздуха (2) регулируется дроссельной заслонкой (3) и перед разделением на 4 потока накапливается в ресивере (4). Ресивер необходим для правильного измерения массового расхода воздуха — измеряет общий массовый расход или давление в ресивере.
Последний должен быть достаточного объема для исключения воздушного «голодания» цилиндров при большом потреблении воздуха и сглаживания пульсаций на пуске. Форсунки (5) устанавливаются в канал в непосредственной близости от впускных клапанов.
Датчики системы впрыска топлива
Для функционирования электронной системы управления двигателем необязательно наличие всех датчиков. Комплектации зависят от системы впрыска, норм токсичности. В программе управления есть флаги комплектации, которые информируют ПО о наличии или отсутствии каких-либо датчиков. Например, в системах Евро-2 отсутствуют датчик неровной дороги.
Датчик фазы нужен для более точного расчета времени впрыска в системах с фазированным впрыском.
Датчик положения коленвала (ДПКВ) — считывает частоту вращения коленвала и его положение. Нужен для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ — полярный датчик. При неправильном включении двигатель заводится не будет. Это единственный «жизненно важный» в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.
Датчик массового расхода воздуха (ДМРВ) — определяет массовый расход воздуха, поступающего в двигатель. Измеряется массовый расход воздуха, который потом пересчитывается программой. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.
Датчик температуры охлаждающей жидкости (ДТОЖ) — следит за температурой охлаждающей жидкости. Нужен для определения коррекции топливоподачи и зажигания по температуре и управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя. Сигнал ДТОЖ подается только на электронный блок управления, для индикации на панели используется другой датчик.
Датчик положения дроссельной заслонки (ДПДЗ) — определяет положение дросселя (нажата педаль «газа» или нет). Служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.
Датчик детонации — контроль детонации мотора. При обнаружении, блок управления двигателем включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания. В первых системах впрыска применялся резонансный датчик детонации, но был заменён на широкополосный датчик.
Датчик скорости (ДС) — определение скорость движения машины. Используется при расчетах блокировки/возобновления топливоподачи при движении. Этот сигнал так же подается на приборную панель для расчета пробега. 6000 сигналов с ДС примерно соответствуют 1 км. пробега автомобиля.
Датчик фазы (ДФ) — определяет положение распредвала. Нужен для точной синхронизации по времени впрыска в системах с фазированным (последовательным) впрыском. При аварии или отсутствие датчика система переходит на попарно — параллельную (групповую) систему подачи топлива.
Датчик неровной дороги — для оценки уровня вибраций двигателя. Необходим для правильной работы системы обнаружения пропусков воспламенения, чтобы определить причину неравномерности (применяется с Евро-3).
Исполнительные механизмы
По результатам опроса датчиков системы впрыска, программа электронного блока управления осуществляет управление исполнительными механизмами (ИМ).
Форсунка — электромагнитный клапан с нормированной производительностью. Служит для впрыска вычисленного для данного режима движения количества топлива.
Бензонасос — предназначен для нагнетания горючего в топливную рампу. Давление в топливной рампе поддерживается вакуумно-механическим регулятором давления. В некоторых системах регулятор давления топлива совмещен с бензонасосом.
Модуль зажигания — электронное устройство управления искрообразованием. Содержит два независимых канала для поджига смеси в цилиндрах. В последних модификациях низковольтные элементы модуля зажигания помещены в электронный блок управления, а для получения высокого напряжения используются выносная двухканальная катушка зажигания или катушки зажигания непосредственно на свече.
Регулятор холостого хода — для поддержания заданных оборотов холостого хода. Это шаговый двигатель, регулирующий канал воздуха в корпусе дроссельной заслонки для обеспечения двигателя воздухом и поддержания холостого хода при закрытой дроссельной заслонке.
Вентилятор системы охлаждения — управляется электронным блоком управления по сигналам датчика температуры охлаждающей жидкости. Разница между включением/выключением обычно 4-5°С.
Сигнал расхода топлива — выдается на маршрутный компьютер — 16000 импульсов на 1 расчетный литр израсходованного топлива. Данные приблизительные, т.к рассчитываются на основе суммарного времени открытия форсунок с учетом некоторого коэффициента. Он необходим для компенсации погрешностей измерения, вызванных работой форсунок в нелинейном участке диапазона, асинхронной топливоподачей и другими факторами.
Адсорбер — элемент замкнутой цепи рециркуляции паров бензина. Нормами Евро не предусмотрен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг.
Электронный блок управления
Это микрокомпьютер, обрабатывающий данные, поступающие с датчиков и по определенному алгоритму управляющий исполнительными механизмами.
Сама программа хранится в микросхеме ПЗУ, английское название — CHIP. Содержимое «чипа» — обычно делится на две функциональные части — собственно программа, осуществляющая обработку данных и математические расчеты и блок калибровок. Калибровки — набор (массив) фиксированных данных (переменных) для работы программы управления.
Для правильной работы системы впрыска необходимо наличие исправных датчиков и исполнительных механизмов.
с центральным впрыском, распределенным впрыском, непосредственным впрыском.
Система впрыска топлива
Современные автомобили оснащают разными системами с впрыском топлива. В двигателях, работающих на бензине, смесь топлива и воздуха принудительно возгорается с помощью искры.
Система с впрыском топлива является неотъемлемым элементом топливной системы автомобиля. Форсунка является главным рабочим элементом любой системы впрыска.
Бензиновые двигатели оснащаются системами с впрыском, которые различаются между собой способом образования смеси топлива с воздухом:
- системы с центральным впрыском;
- системы с распределенным впрыском;
- системы с непосредственным впрыском.
Центральный впрыск, или иначе его называют моновпрыск (Monojetronic), осуществляется одной центральной электромагнитной форсункой, которая впрыскивает топливо во впускной коллектор. Это чем-то напоминает карбюратор. Сейчас автомобили с такой системой впрыска не производятся, так как у автомобиля с такой системой наблюдается высокий расход топлива и невысокие экологические свойства автомобиля.
Система распределенного впрыска постоянно с годами совершенствовалась. Начало положила система K-jetronic. Впрыск был механическим, что давало ему хорошую надежность, но расход топлива был весьма высоким. Топливо подавалось не импульсно, а постоянно. На смену данной системы пришла система KE-jetronic.
Она ничем принципиально не отличалась от K-jetronic, но появился электронный блок управления (ЭБУ), который позволил незначительно сократить расход топлива. Но и эта система не принесла ожидаемых результатов. Появилась система L-jetronic.
В которой ЭБУ воспринимал сигналы от датчиков и направлял электромагнитный импульс на каждую форсунку. Система обладала хорошими экономическими и экологическими показателями, но конструктора не стали на этом останавливаться, и разработали совершенно новую систему Motronic.
Блок управления стал управлять и впрыском топлива, и системой зажигания. Топливо стало лучше сгорать в цилиндре, увеличилась мощность двигателя, уменьшился расход и вредные выбросы автомобиля. Во всех этих системах представленных выше впрыск осуществляется отдельной форсункой на каждый цилиндр во впускной коллектор, где и происходит образование смеси топлива с воздухом, которая попадает в цилиндр.
Наиболее перспективной системой на сегодняшний день является система с непосредственным впрыском.
Суть данной системы заключается в том, что топливо впрыскивается сразу в камеру сгорания каждого цилиндра, и уже там смешивается с воздухом. Система определяет и подает оптимальный состав смеси в цилиндр, что обеспечивает хорошую мощность на различных режимах работы двигателя, хорошую экономичность и высокие экологические свойства двигателя.
Но с другой стороны, двигателя с данной системой впрыска обладают более высокой ценой по сравнению со своими предшественниками, из-за сложности своей конструкции. Также данная система очень требовательна к качеству топлива.
Спрашивайте в комментариях. Ответим обязательно!
Системы впрыска бензиновых двигателей | Delphi Auto Parts
Переход на новый уровень с новой оригинальной технологией
Наша система Multec® 14 (M14) — первая в отрасли система впрыска, работающая под давлением 350 бар, — обеспечивает переход на качественно новый уровень, увеличивая давление с 200 до 350 бар. Благодаря более быстрому впрыску в камеру сгорания более мелких капель топливной смеси объем выбросов углеводородов и твердых частиц в новейших системах снижается почти на 70 процентов, что повышает топливную экономичность. Но это еще не все — мы уже работаем над решением с давлением 500 бар.
Высокий профессионализм на рынке послепродажного обслуживания
На рынке послепродажного обслуживания мы также демонстрируем наш высокий профессионализм и богатый опыт. Наша программа техобслуживания систем непосредственного впрыска GDi включает в себя отмеченные наградами многоструйные топливные форсунки Multec® GDi, оптимизирующие подачу и сгорание топлива, малошумные топливные насосы GDi высокого давления и сервисные комплекты, предоставляющие доступ к оригинальным компонентам для высококачественного и комплексного сервисного обслуживания.
Больше, чем просто компоненты
Мы также предлагаем комплексное электронное и гидравлическое диагностическое решение, включая наш хорошо зарекомендовавший себя прибор для бортовой диагностики, комплект для диагностики контуров высокого давления HD3000, позволяющий механикам безопасно установить и электронным образом контролировать любую величину испытательного давления вплоть до 3000 бар, а также универсальный прибор для диагностики контуров . низкого давления LP35.
Обучение от экспертов в сфере производства оригинальных комплектующих
Что еще следует знать об обслуживании систем GDi? Предлагаемые нами специализированные курсы однодневного обучения содержат теоретическую часть, практическую часть, упражнения на автомобиле и охватывают такие ключевые темы, как функционирование компонентов, типичные системы и неполадки, бензиновые системы высокого давления и др. Они помогут вам овладеть необходимыми навыками и знаниями для обслуживания автомобилей с новейшими системами GDi.
Узнать больше о системе GDI
Система впрыска топлива бензиновых (инжекторных) и дизельных двигателей
Содержание статьи
В современных автомобилях в бензиновых силовых установках принцип работы системы питания схож с тем, который применяется на дизелях. В этих моторах она разделена на две – впуска и впрыска. Первая обеспечивает подачу воздуха, а вторая – топлива. Но из-за конструктивных и эксплуатационных особенностей функционирование впрыска существенно отличается от применяемого на дизелях.
Отметим, что разница в системах впрыска дизельных и бензиновых моторов все больше стирается. Для получения лучших качеств конструкторы заимствуют конструктивные решения и применяют их на разных видах систем питания.
Устройство и принцип работы инжекторной системы впрыска
Второе название систем впрыска бензиновых моторов – инжекторная. Основная ее особенность заключается в точной дозировке топлива. Достигается это путем использования в конструкции форсунок. Устройство инжекторного впрыска двигателя включает в себя две составляющие – исполнительную и управляющую.
В задачу исполнительной части входит подача бензина и его распыление. Она включает в себя не так уж и много составных элементов:
- Бак.
- Насос (электрический).
- Фильтрующий элемент (тонкой очистки).
- Топливопроводы.
- Рампа.
- Форсунки.
Но это только основные компоненты. Исполнительная составляющая может в себя включать еще ряд дополнительных узлов и деталей – регулятор давления, систему слива излишков бензина, адсорбер.
В задачу указанных элементов входит подготовка топлива и обеспечение его поступления к форсункам, которыми и осуществляется их впрыскивание.
Принцип работы исполнительной составляющей прост. При повороте ключа зажигания (на некоторых моделях – при открытии водительской двери) включается электрический насос, который качает бензин и заполняет им остальные элементы. Топливо проходит очистку и по топливопроводам поступает в рампу, которая соединяет собой форсунки. За счет насоса топливо во всей системе находится под давлением. Но его значение ниже, чем на дизелях.
Открытие форсунок осуществляется за счет электрических импульсов, подаваемых с управляющей части. Эта составляющая системы впрыска топлива состоит из блока управления и целого комплекта следящих устройств – датчиков.
Эти датчики отслеживают показатели и параметры работы – скорость вращения коленчатого вала, количества подаваемого воздуха, температуры ОЖ, положения дросселя. Показания поступают на блок управления (ЭБУ). Он эту информацию сравнивает с данными, занесенными в память, на основе чего определяется длина электрических импульсов, подаваемых на форсунки.
Электроника, используемая в управляющей части системы впрыска топлива, нужна, чтобы высчитать время, на которое должна открыться форсунка при том или ином режиме работы силового агрегата.
Виды инжекторов
Но отметим, что это общая конструкция системы подачи бензинового мотора. Но инжекторов разработано несколько, и каждая из них обладает своими конструктивными и рабочими особенностями.
На автомобилях применяются системы впрыска двигателя:
- центрального;
- распределенного;
- непосредственного.
Центральный впрыск считается первым инжектором. Его особенность заключается в использовании только одной форсунки, которая впрыскивала бензин во впускной коллектор одновременно для всех цилиндров. Изначально он был механическим и никакой электроники в конструкции не использовалось. Если рассмотреть устройство механического инжектора, то она схожа с карбюраторной системой, с единственной разницей, что вместо карбюратора использовалась форсунка с механическим приводом. Со временем центральную подачу сделали электронной.
Сейчас этот тип не используется из-за ряда недостатков, основной из которых — неравномерность распределения топлива по цилиндрам.
Распределенный впрыск на данный момент является самой распространенной системой. Конструкция этого типа инжектора расписана выше. Ее особенность заключается в том, что топливо для каждого цилиндра подает своя форсунка.
В конструкции этого вида форсунки устанавливаются во впускном коллекторе и располагаются рядом с ГБЦ. Распределение топлива по цилиндрам дает возможность обеспечить точную дозировку бензина.
Непосредственный впрыск сейчас является самым совершенным типом подачи бензина. В предыдущих двух типах бензин подавался в проходящий поток воздуха, и смесеобразование начинало осуществляться еще во впускном коллекторе. Этот же инжектора по конструкции копирует дизельную систему впрыска.
В инжекторе с непосредственной подачей распылители форсунок располагаются в камере сгорания. В результате компоненты топливовоздушной смеси здесь запускаются в цилиндры по отдельности, и уже в самой камере они смешиваются.
Особенность работы этого инжектора заключается в том, что для впрыскивания бензина требуется высокие показатели давления топлива. И его создание обеспечивает еще один узел, добавленный в устройство исполнительной части – насос высокого давления.
Системы питания дизельных двигателей
И дизельные системы модернизируются. Если раннее она была механической, то сейчас и дизеля оснащаются электронным управлением. В ней используются те же датчики и блок управления, что и в бензиновом моторе.
Сейчас на автомобилях применяется три типа дизельных впрысков:
- С распределительным ТНВД.
- Common Rail.
- Насос-форсунки.
Как и в бензиновых моторах, конструкция дизельного впрыска состоит из исполнительной и управляющей частей.
Многие элементы исполнительной части те же, что и у инжекторов – бак, топливопроводы, фильтрующие элементы. Но есть и узлы, которые не встречаются на бензиновых моторах – топливоподкачивающий насос, ТНВД, магистрали для транспортировки топлива под высоким давлением.
В механических системах дизелей применялись рядные ТНВД, у которых давление топлива для каждой форсунки создавала своя отдельная плунжерная пара. Такие насосы отличались высокой надежностью, но были громоздкими. Момент впрыска и количество впрыскиваемого дизтоплива регулировалось насосом.
В двигателях, оснащаемых распределительным ТНВД, в конструкции насоса используется только одна плунжерная пара, которая качает топливо для форсунок. Этот узел отличается компактными размерами, но ресурс его ниже, чем рядных. Применяется такая система только на легковом автотранспорте.
Common Rail считается одной из самых эффективных дизельных систем впрыска двигателя. Общая концепция ее во многом позаимствована у инжектора с раздельной подачей.
В таком дизеле моментом начала подачи и количеством топлива «заведует» электронная составляющая. Задача насоса высокого давления — только нагнетание дизтоплива и создание высокого давления. Причем дизтопливо подается не сразу на форсунки, а в рампу, соединяющую форсунки.
Насос-форсунки – еще один тип дизельного впрыска. В этой конструкции ТНВД отсутствует, а плунжерные пары, создающие давление дизтоплива, входят в устройство форсунок. Такое конструктивное решение позволяет создавать самые высокие значения давления топлива среди существующих разновидностей впрыска на дизельных агрегатах.
Напоследок отметим, что здесь приводится информация по видам впрыска двигателей обобщенно. Чтобы разобраться с конструкцией и особенностями указанных типов, их рассматривают по отдельности.
Видео: Управление системой впрыска топлива
Как работает система впрыска топлива?
Как работает система впрыска топлива?
C годами, системы подачи топлива, которые используются в современных автомобилях, претерпели значительные изменения для того, чтобы соответствовать стандартам топливной и эмиссионной эффективности. Subaru Justy 1990 г. была последним автомобилем с карбюратором, проданным на территории США, все последующие модельные ряды Justy имели систему впрыска топлива. Однако системы впрыска топлива существовали с 1950-х, а системы электронного впрыска топлива широко использовались в европейских автомобилях с 1980-х. Сейчас все автомобили, продающиеся в США, имеют системы впрыска топлива.
В этой статье мы узнаем о том, как топливо попадает в цилиндр двигателя, а также, что означают такие термины, как «впрыск топлива во впускной тракт» и «впрыск топлива в корпусе дроссельных заслонок».
Отказ от карбюраторов
В течение долгого времени, карбюратор был устройством подачи топлива в двигатели внутреннего сгорания. Он до сих пор используется в таких устройствах, как газонокосилки и бензопилы. Однако с развитием автомобилей, конструкция карбюраторов становилась все сложнее в попытке соответствовать всем техническим требованиям. Например, для того, чтобы справиться с некоторыми задачами, карбюраторы имели пять различных узлов:
— Главная дозирующая система — Обеспечивает подачу топлива, достаточного при движении автомобиля со средними скоростями
— Система холостого хода — Обеспечивает подачу топлива, необходимого для работы двигателя на низких оборотах
— Ускорительный насос — Обеспечивает впрыск дополнительного топлива при нажатии на педаль газа для предотвращения остановки двигателя и перебоев в его работе при разгоне автомобиля
— Система обогащения смеси — Обеспечивает подачу дополнительного топлива при движении автомобиля в гору или использовании прицепа
— Воздушная заслонка — Обеспечивает подачу дополнительного топлива для запуска холодного двигателя
Для соответствия ужесточающимся требованиям к качеству выхлопных газов, стали применять каталитический конвертер. Для эффективной работы каталитического конвертера необходим тщательный контроль состава топливно-воздушной смеси. Кислородные датчики отслеживают количество кислорода в выхлопе, и блок управления двигателем (ECU) использует данную информацию для корректировки состава топливно-воздушной смеси в реальном времени. Это называется регулирование с обратной связью — данный метод невозможно было применять при использовании карбюраторов. Время карбюраторов с электронным управлением было недолгим, после чего стали использоваться системы впрыска топлива, однако устройство электронных карбюраторов было намного сложнее механических.
Вначале, карбюраторы заменили на систему впрыска топлива в корпусе дроссельных заслонок (также известная как система одноточечного или центрального впрыска топлива), которая объединяла в себе клапаны инжектора с электрическим управлением и дроссельную заслонку. Такие системы стали простым решением для замены карбюраторов, при этом производителям автомобилей не пришлось значительно изменять конструкции двигателей.
Постепенно, с разработкой новых двигателей, система впрыска топлива в корпусе дроссельных заслонок была заменена на систему впрыска топлива во впускной тракт (также известную как точечный, многоточечный или последовательный впрыск топлива). В этих системах для каждого цилиндра установлен свой инжектор, обычно расположенный таким образом, чтобы впрыск происходил непосредственно во впускной клапан. Такие системы обеспечивают более точный замер расхода топлива и являются более чувствительными.
Когда Вы нажимаете на педаль газа
Педаль газа Вашего автомобиля соединяется с дроссельной заслонкой — клапаном, который регулирует количество воздуха, поступающего в двигатель. Таким образом, педаль газа — это педаль подачи воздуха.
Когда Вы нажимаете на педаль газа, дроссельная заслонка открывается больше, подавая больше воздуха. Блок управления двигателем (ECU, компьютер, контролирующий все электронные компоненты двигателя) «видит», что дроссельная заслонка открылась, и увеличивает подачу топлива в связи с увеличением подачи воздуха. Необходимо увеличивать подачу топлива при открытии дроссельной заслонки; в противном случае, при нажатии на педаль газа может произойти задержка, т.к. воздух поступает в цилиндры без топлива.
Датчики отслеживают массу воздуха, поступающую в двигатель, а также количество кислорода в выхлопе. Блок управления двигателем использует данную информацию для точной регулировки подачи топлива, чтобы обеспечить необходимый состав топливно-воздушной смеси.
Инжектор
При подаче питания на инжектор, электромагнит перемещает плунжер, который открывает клапан, который распыляет топливо под давлением через небольшую форсунку. Форсунка предназначена для распыления топлива — чем мельче распыление, тем легче сгорает топливо.
Срабатывание инжектора
Количество топлива, подаваемого на двигатель, определяется временем, в течение которого форсунка остается открытой. Это называется длительность импульса и контролируется блоком управления двигателем.
Инжекторы устанавливаются на впускном коллекторе для распыления топлива непосредственно во впускные клапаны. Труба, которая называется топливная рампа, осуществляет подачу топлива на все инжекторы.
Для обеспечения подачи необходимого количества топлива, блок управления двигателем оснащен множеством датчиков. Давайте рассмотрим некоторые из них.
Датчики двигателя
Для обеспечения подачи необходимого количества топлива для всех условий езды, блок управления двигателем (ECU) оснащен множеством датчиков. Ниже представлены некоторые из них:
· Датчик массового расхода воздуха — Передает на блок управления двигателем массу воздуха, поступающего в двигатель
· Датчик(и) кислорода — Отслеживает количество кислорода в выхлопе для того, чтобы блок управления определил, насколько богатой или бедной является топливная смесь, и произвел необходимые корректировки
· Датчик положения дроссельной заслонки — Отслеживает положение дроссельной заслонки (которое определяет количество воздуха, поступающего в двигатель) для того, чтобы блок управления произвел корректировку, понижая или повышая количество поступающего топлива
· Датчик температуры охлаждающей жидкости — Позволяет блоку управления определить, что двигатель разогрелся до нужной рабочей температуры
· Датчик напряжения — Отслеживает напряжение бортовой сети для того, чтобы блок управления мог увеличить скорость холостого хода при падении напряжения (что является показателем высокой электрической нагрузки)
· Коллекторный датчик абсолютного давления — Отслеживает давления воздуха во впускном коллекторе
· Количество поступающего в двигатель воздуха является хорошим показателем производимой мощности; чем больше воздуха поступает в двигатель, тем ниже давление в коллекторе, эти данные используются для определения производимой мощности.
· Датчик скорости вращения коленчатого вала — Отслеживает число оборотов двигателя, что является одним из показателей для расчета длительности импульса
Существует два основных типа контроля многоточечных систем: Все инжекторы могут срабатывать одновременно, либо каждый срабатывает отдельно перед открытием соответствующего впускного клапана цилиндра (такой тип называется последовательный многоточечный впрыск топлива).
Преимущество последовательного впрыска топлива заключается в том, что если при езде происходят резкие изменения, то система более быстро реагирует на них, т.к. для изменения необходимо дождаться лишь пока не откроется следующий впускной клапан, вместо того, чтобы дожидаться начала следующего оборота двигателя.
Управление двигателем и Модули увеличения мощности
Алгоритмы, контролирующие двигатель, являются довольно сложными. Программное обеспечение должно позволять автомобилю соответствовать требованиям по выхлопу на каждые 100.000 км, требованиям Управления по охране окружающей среды, а также препятствовать раннему износу двигателя. Помимо этого, существует множество требований, которым необходимо соответствовать.
Блок управления двигателем использует формулу и большое количество поисковых таблиц для определения длительности импульса для заданных условий работы. Формула представляет собой ряд показателей, умноженных друг на друга. Большая часть показателей берется из поисковых таблиц. Давайте рассмотрим упрощенную формулу вычисления длительности импульса инжектора. В данном примере уравнение будет содержать всего три показателя, в то время как система управления может использовать несколько сотен или даже больше.
Длительность импульса = (Начальная длительность импульса) х (Показатель А) х (Показатель В)
Для вычисления длительности импульса, блок управления двигателем в первую очередь определяет длительность опорного импульса в поисковой таблице. Начальная длительность импульса представляет собой функцию частоты вращения двигателя (об/мин) и нагрузки (которая вычисляется по абсолютному давлению во впускном коллекторе). Допустим, что частота вращения двигателя составляет 2.000 об/мин при нагрузке 4. Нужное значение мы найдем на пересечении 2.000 и 4, что составляет 8 мс.
об/минНагрузка
12345
1.00012345
2.000246810
3.0003691215
4.00048121620
В следующих примерах, A и B являются показателями, которые поступают с датчиков. Предположим, что A — это температура охлаждающей жидкости, а B — это уровень кислорода. Если температура охлаждающей жидкости равна 100, а уровень кислорода равен 3, то, исходя из данных таблицы, мы получаем, что Показатель А = 0,8, а Показатель В = 1,0.
AПоказатель А
BПоказатель B
01,2
01,0
251,1
11,0
501,0
21,0
750,9
31,0
1000,8
40,75
Итак, теперь мы знаем, что начальная длительность импульса является функцией нагрузки и частоты вращения, и что длительность импульса = (начальная длительность импульса) x (Показатель A) x (Показатель B), общая длительность импульса в нашем примере равна:
8 x 0,8 x 1,0 = 6,4 мс
Исходя из этого примера, Вы теперь понимаете, как система управления совершает корректировки. Если показатель В — это уровень кислорода в выхлопе, в таблице указано, что значение показателя В соответствует (согласно данным конструкторов двигателя) повешенному содержанию кислорода в выхлопе; при этом блок управления двигателем сокращает подачу топлива.
Настоящие системы управления используют более 100 показателей, для каждого из которых имеется соответствующая таблица. Некоторые показатели меняются со временем с учетом поправки на изменения эффективности работы некоторых компонентов двигателя, например, каталитического конвертера. И, в зависимости от частоты вращения двигателя, блок управления двигателем выполняет данные вычисления более 100 раз в секунду.
Модули увеличения мощности
Далее логично будет перейти к модулям увеличения мощности. Теперь, когда мы немного разобрались в том, как работают алгоритмы управления, мы можем понять, что же делают производители модулей увеличения мощности для повышения мощности двигателя.
Модули увеличения мощности изготавливаются компаниями, работающими на послегарантийном рынке, и используются для повышения мощности двигателя. В блоке управления двигателем находится модуль, в котором хранятся все поисковые таблицы; модуль увеличения мощности заменяет его. Таблицы в модуле увеличения мощности содержат данные, которые позволяют увеличить подачу топлива в определенных условиях езды. Например, может подаваться больше топлива при полном дросселе на любых оборотах двигателя. Также может быть изменена установка момента зажигания (для этого также существуют таблицы). В связи с тем, что производители модулей увеличения мощности, в отличие от производителей автомобилей, не связаны такими обязательствами, как надежность, пробег и контроль выхлопа, они могут использовать более высокие значения в поисковых таблицах.
Для получения большей информации по системам впрыска топлива, рекомендуем ознакомиться с ссылками на следующей странице.
Источник: https://auto.howstuffworks.com/fuel-injection.htm
Система впрыска топлива
Существует несколько методов впрыска топлива:
непрерывный впрыск топлива, точечный впрыск топлива, распределённый
впрыск топлива и непосредственный впрыск топлива. Непрерывный впрыск
топлива осуществлялся механическими и электромеханическими системами
впрыска топлива. Остальные электронные системы впрыска топлива подают
топливо строго дозированными порциями.
Системы непрерывного впрыска топлива
Наиболее распространёнными примерами непрерывного
впрыска топлива являются механическая система впрыска топлива BOSCH
K-Jetronic и электромеханическая система впрыска топлива BOSCH
KE-Jetronic. Здесь топливо впрыскивается непрерывным потоком при помощи
механических форсунок, распыляющих топливо пред впускными клапанами
каждого цилиндра. Количество топлива регулируется путём изменения
интенсивности потока впрыскиваемого топлива. Данные системы применялись
на ранних системах питания двигателя, и были вытеснены более надёжными и
точными электронными системами подачи топлива.
Системы точечного впрыска топлива
Системы точечного впрыска топлива оснащены одной
электромагнитной форсункой (иногда двумя форсунками работающими в паре,
на двигателях с раздельными группами цилиндров), впрыскивающей топливо
во впускной тракт перед дроссельной заслонкой. Как и в случае
карбюраторного питания, во время работы двигателя оборудованного
точечным впрыском, впускной коллектор двигателя весь заполняется готовой
топливовоздушной смесью.
Впрыск топлива здесь осуществляется не
непрерывной струёй, а подаётся порциями. Количество подаваемого топлива
регулируется путём изменения продолжительности открытого состояния форсунки.
Форсунка точечной системы впрыска топлива за два оборота коленчатого
вала двигателя (один полный цикл работы четырёхтактного двигателя)
впрыскивает топливо четыре раза. Недостатки такой системы приготовления
топливовоздушной смеси схожи с карбюраторными системами, связанные с
задержкой и неравномерностью подачи топливовоздушной смеси для разных
цилиндров, не столь хорошей приемистостью двигателя, оседание топлива на
стенках впускного коллектора, особенно во время холодного запуска
двигателя. Хотя для такой системы впрыска не предъявляются высокие
требования к качеству распыла топлива, так как отводится достаточно
времени на испарение и смешивание топлива с поступившим в впускной
коллектор воздухом.
Осциллограммы напряжения сигналов системы
управления двигателем BOSCHMONO-Motronic, демонстрирующие схему впрыска
топлива данной системы.
1 Осциллограмма
напряжения выходного сигнала датчика Холла, встроенного в корпус
механического распределителя зажигания. Датчик генерирует четыре
импульса за два оборота коленчатого вала двигателя.
2 Осциллограмма
напряжения управляющих импульсов топливной форсункой. За один полный
цикл работы двигателя форсунка осуществляет четыре впрыска топлива.
3 Импульс синхронизации с моментом зажигания в первом цилиндре.
Обмотка топливной форсунки точечной системы
впрыска, имеет низкое электрическое сопротивление — единицы Ома
(топливные форсунки с низким электрическим сопротивлением встречаются и в
других систем впрыска топлива). За счёт уменьшения сопротивления
обмотки увеличивается быстродействие форсунки, что позволяет впрыскивать
небольшие порции топлива. Для уменьшения нагрева обмотки форсунки,
применяются меры, ограничивающие величину протекающего через обмотку
форсунки тока.
В некоторых системах с этой целью используется
мощный токоограничивающий резистор, включённый последовательно в цепь
питания форсунки.
Осциллограммы напряжения питания и
управляющего импульса на выводах обмотки низкоомной форсунки (система
точечного впрыска топлива BOSCH MONO Jetronic).
1 Осциллограмма напряжения на управляющем выводе обмотки форсунки.
2 Осциллограмма напряжения на питающем выводе обмотки форсунки (после токоограничивающего резистора).
Как видно по приведённым осциллограммам, за счёт
возникновения падения напряжения на токоограничивающем резисторе,
напряжение питания обмотки форсунки автоматически снижается.
В некоторых системах, применяются более сложные
алгоритмы управления форсункой. В таких случаях, импульс управления
форсункой имеет более сложную форму и делится уже на две фазы: фаза
открывания клапана топливной форсунки и фаза удержания клапана топливной
форсунки в открытом состоянии.
Осциллограмма напряжения управляющего
импульса низкоомной форсункой системы управления двигателем с точечным
впрыском топлива Multec IEFI автомобиля производства OPEL.
A: Значение напряжения в
момент времени указанный маркером. В данном случае соответствует
напряжению питания обмотки форсунки и равно 14,6 V.
1 Момент
открытия управляющего форсункой силового транзистора. С этого момента
на обмотку форсунки действует напряжение величиной около 14 V.
2 Фаза открывания клапана топливной форсунки.
3 Момент переключения управляющего форсункой силового транзистора в режим ограничения тока в цепи форсунки.
4 Фаза
удержания клапана топливной форсунки в открытом состоянии Управляющий
форсункой силовой транзистор работает в режиме ограничения тока в цепи
форсунки, обеспечивая подвод к обмотке форсунки пониженного напряжения.
A-B: Значение разницы
напряжений между указанными маркерами моментами времени. В данном случае
соответствует величине воздействующего на обмотку форсунки напряжения
во время фазы удержания клапана топливной форсунки в открытом состоянии и
равно ~1,7 V
5 Момент закрытия управляющего форсункой силового транзистора.
Как можно видеть по приведённой выше
осциллограмме, в первоначальный момент времени на низкоомную обмотку
форсунки кратковременно подаётся напряжение, близкое к напряжению на
клеммах аккумуляторной батареи, что обеспечивает ускорение процесса
открытия клапана топливной форсунки. Продолжительность фазы открывания
клапана
топливной форсунки здесь составляет около 1 mS.
Теперь, когда клапан форсунки открыт, для удержания клапана в открытом
состоянии достаточно уже меньшего тока. Величина протекающего через
обмотку тока ограничивается путём уменьшения величины воздействующего на
обмотку напряжения. В данном случае, уменьшение воздействующего на
обмотку форсунки напряжения достигается путём «призакрытия» управляющего
силового транзистора. Тем самым уменьшается чрезмерный нагрев обмотки
форсунки (дополнительное охлаждение форсунки обеспечивается за счёт
омывающего форсунку топлива). Продолжительность фазы удержания клапана
топливной форсунки в открытом состоянии может изменяться и зависит от
того, какую порцию топлива в данный момент требуется впрыснуть.
В некоторых системах, ограничение протекающего
через обмотку форсунки тока во время фазы удержания клапана в открытом
состоянии реализовано другим способом.
Осциллограмма напряжения управляющего
импульса низкоомной форсункой системы управления двигателем BDZ с
точечным впрыском топлива, устанавливаемого на автомобили Peugeot 405.
Здесь во время фазы удержания, управляющий
обмоткой форсунки силовой транзистор переключается в режим
Широтно-Импульсной Модуляции (ШИМ). Благодаря этому, обмотка форсунки
многократно подключается к источнику напряжения и отключается от него,
после чего процесс повторяется. Частота процесса подключения /
отключения обмотки настолько высока, что механическая система форсунки
(клапан) «не успевает» закрываться в моменты, когда питающее напряжение
отключено.
Системы распределённого впрыска топлива
Каждый цилиндр системы распределённого впрыска
топлива обслуживается собственной электромагнитной форсункой. Каждая
форсунка такой системы впрыскивает топливо во впускной коллектор пред
впускными клапанами каждого цилиндра. Таким образом, только часть
внутреннего объёма впускного коллектора работающего двигателя
заполняется подготовленной топливной смесью. Как и в системе точечного
впрыска топлива, здесь впрыск осуществляется не непрерывной струёй
топлива, а подаётся порциями. Количество подаваемого топлива
регулируется путём изменения продолжительности открытого состояния
форсунки.
Электромагнитные топливные форсунки имеют
некоторую инерционность. Проявляется эта инерционность как задержка
открытия и задержка закрытия клапана форсунки относительно управляющего
напряжения. Задержка открытия клапана форсунки может составлять около
1,5 mS, кроме того, она может изменяться с изменением величины
напряжения на аккумуляторной батарее. Задержка закрытия клапана форсунки
может составлять около 1,0 mS. Когда двигатель работает под нагрузкой,
длительность впрыска топлива может составлять несколько единиц или даже
десятки миллисекунд, то есть -длительность впрыска топлива при этом
значительно превышает время задержки срабатывания клапана форсунки, и за
счёт этого инерционность форсунки сказывается мало заметно.
Когда двигатель работает при малых нагрузках или
на холостом ходу, длительность впрыска значительно уменьшается, и
становится сравнимой с временем задержки срабатывания клапана форсунки.
Из-за этого, инерционность форсунки может сказываться значительно
сильнее и точность дозирования количества впрыскиваемого топлива может
сильно снизиться. Поэтому, для таких форсунок не используют управляющие
импульсы продолжительностью менее 1,5 mS. Кроме того, инерционность
форсунок, обслуживающих разные цилиндры одного и того же двигателя со
значительным пробегом может заметно различаться, что вносит
дополнительную погрешность дозирования малых порций топлива.
Классификация систем распределённого впрыска топлива
Распределённые системы впрыска топлива
различаются по схеме работы впрыска топлива: параллельный впрыск,
попарно-параллельный, фазированный (последовательный).
Параллельный впрыск топлива
Топливные форсунки многих ранних распределённых
систем впрыска топлива соединены параллельно. При такой схеме,
управление форсунками двигателя происходит одновременно — все форсунки
такой системы работают синхронно.
Осциллограммы напряжения сигналов системы
управления 4-х цилиндрового 4-х тактного двигателя, осуществляющей
параллельный впрыск топлива, демонстрирующие схему впрыска топлива
данной системы.
1 Осциллограмма напряжения управляющих импульсов топливной форсункой 1-го цилиндра.
2 Осциллограмма напряжения управляющих импульсов топливной форсункой 2-го цилиндра.
3 Осциллограмма напряжения управляющих импульсов топливной форсункой 3-го цилиндра.
4 Осциллограмма напряжения управляющих импульсов топливной форсункой 4-го цилиндра.
7 Импульс синхронизации с моментом зажигания в первом цилиндре.
В системах параллельного впрыска, за один полный
цикл работы двигателя (за два оборота коленчатого вала 4-х тактного
двигателя), каждая форсунка впрыскивает топливо дважды. То есть, каждая
порция топлива, попадающего впоследствии в цилиндр во время
такта впуска, впрыскивается «за два приёма».
Из-за того, что подача каждой порции топлива осуществляется за два
впрыска, в сравнении с точечным впрыском, точность дозирования
получается несколько лучшей; но в сравнении с фазированным впрыском,
точность дозирования получается несколько хуже, особенно на переходных
режимах работы двигателя.
Блок управления параллельной системы впрыска
топлива должен учитывать инерционность открытия клапана форсунки,
которая сильно зависит от величины напряжения в бортовой сети
автомобиля. При больших порциях впрыскиваемого топлива, к примеру, во
время ускорения автомобиля или во время холодного пуска, часть топлива
оседает на стенках впускного коллектора и попадает в цилиндр с некоторой
задержкой, что сказывается на приемистости двигателя. Но к качеству
распыла топлива здесь предъявляются немного меньшие требования, так как
отводится достаточно времени на испарение топлива и смешивание его с
воздухом.
Недостаток параллельного впрыска заключается в
неодинаковом для всех цилиндров времени от начала впрыскивания топлива
форсункой до момента открытия впускного клапана цилиндра. При
одновременном впрыске топлива порядок работы цилиндров не учитывается,
соответственно время подготовки топливовоздушной смеси (время испарения
топлива) для каждого цилиндра получается разным.
Попарно-параллельный впрыск топлива
Для уменьшения зависимости качества подготовки
топливовоздушной смеси от момента впрыска топлива, а так же для
улучшения точности дозирования топлива на переходных режимах работы
двигателя, топливные форсунки были разделены на группы согласно порядку
работы цилиндров и соединены попарно-параллельно — половина форсунок
соединена параллельно и управляется своим выходным силовым транзистором
блока управления двигателем, другая половина форсунок так же соединена
параллельно и управляется своим, вторым выходным силовым транзистором
блока управления двигателем.
Управление форсунками одной группы происходит
одновременно — все форсунки одной группы работают синхронно. Когда
форсунки первой группы впрыскивают топливо, форсунки второй группы
закрыты, и наоборот. При этом, первая и вторая группы форсунок, так же
как и в системе параллельного впрыска топлива, впрыскивают топливо
дважды за один цикл работы 4-х тактного двигателя (за два оборота
коленвала).
Осциллограммы напряжения сигналов системы
управления 4-х цилиндрового 4-х тактного двигателя, осуществляющей
попарно-параллельный впрыск топлива, демонстрирующие схему впрыска
топлива данной системы. Порядок работы цилиндров 1 — 3 — 4 — 2. В данном
случае в первую пару объединены форсунки, обслуживающие цилиндры №1 и
№4, а во вторую пару объединены форсунки, обслуживающие цилиндры №2 и
№3. Но встречаются системы, где при таком же порядке работы цилиндров
двигателя, форсунки объединены в пары по-другому.
напряжения управляющих импульсов топливной
напряжения управляющих импульсов топливной
напряжения управляющих импульсов топливной
напряжения управляющих импульсов топливной
форсункой форсункой форсункой форсункой
1 Осциллограмма 1-го цилиндра.
2 Осциллограмма 2-го цилиндра.
3 Осциллограмма 3-го цилиндра.
4 Осциллограмма 4-го цилиндра.
5 Осциллограмма
напряжения выходного сигнала датчика положения / частоты вращения
коленчатого вала. За один полный оборот коленвала датчик генерирует 58
импульсов и один пропуск, продолжительность которого соответствует
продолжительности двух импульсов. Соответственно, за один полный цикл
работы 4-х тактного двигателя (за два оборота коленвала) датчик
генерирует такие пропуски дважды.
7 Импульс синхронизации с моментом зажигания в первом цилиндре.
Следует заметить, что в момент пуска двигателя
блок управления двигателем переключается на параллельную схему впрыска
топлива, то есть, включает и выключает все топливные форсунки
одновременно.
Фазированный впрыск топлива
Для дальнейшего повышения точности дозирования
впрыскиваемого топлива при малых длительностях впрыска путём уменьшения
негативного влияния инерционности электромагнитных топливных форсунок,
каждую форсунку стали обслуживать собственным выходным транзистором
блока управления двигателем. Такая схема впрыска называется фазированным
впрыском или последовательным впрыском топлива. За счёт уменьшения
частоты срабатывания форсунки по сравнению с параллельным и
попарно-параллельным впрыском в два раза, потребовалось уже более
продолжительное открытие форсунки для обеспечения подачи того же
количества топлива. То есть, схема управления форсунками была
модернизирована так, что вместо двух коротких впрысков топлива
осуществляется один более продолжительный впрыск. Таким образом, замена
параллельной схемы впрыска топлива на фазированную позволила заметно
повысить точность дозирования впрыскиваемого топлива при малых
длительностях впрыска.
Осциллограммы
напряжения сигналов системы управления 4-х цилиндрового 4-х двигателя,
осуществляющей фазированный впрыск топлива, демонстрирующие схему
впрыска топлива данной системы.
1 Осциллограмма напряжения управляющих импульсов топливной 1-го цилиндра.
2 Осциллограмма напряжения управляющих импульсов топливной 2-го цилиндра.
3 Осциллограмма напряжения управляющих импульсов топливной 3-го цилиндра.
4 Осциллограмма напряжения управляющих импульсов топливной 4-го цилиндра.
5 Осциллограмма напряжения
выходного сигнала датчика положения / частоты вращения коленчатого
вала. За один полный оборот коленвала датчик генерирует 58 импульсов и
один пропуск, продолжительность которого соответствует продолжительности
двух импульсов. Соответственно, за один полный цикл работы 4-х тактного
двигателя (за два оборота коленвала) датчик генерирует такие пропуски
дважды.
6 Осциллограмма
напряжения выходного сигнала датчика положения распределительного вала
(датчика фаз). За два полных оборота коленвала датчик генерирует один
импульс.
7 Импульс синхронизации с моментом зажигания в первом цилиндре.
Здесь, впрыск топлива осуществляется тогда, когда
обслуживаемый данной форсункой цилиндр находится на такте выпуска
отработавших газов, то есть, незадолго до такта впуска. За два полных
оборота коленчатого вала двигателя соответствующих одному полному циклу
работы четырёхтактного двигателя, каждая форсунка впрыскивает топливо
только один раз. То есть, по сравнению с параллельным и
попарно-параллельным впрыском, здесь частота срабатывания форсунки
уменьшена в два раза. За счёт этого, для обеспечения подачи заданного
количества топлива потребовалось более продолжительное открытие
форсунки, а за счёт увеличения продолжительности открытого состояния
форсунки уменьшилось негативное влияние инерционности электромагнитных
топливных форсунок на точность дозирования топлива. Таким образом,
замена попарно-параллельной схемы впрыска топлива на фазированную
позволила ещё больше повысить точность дозирования впрыскиваемого
топлива при малых длительностях впрыска.
Для реализации фазированной схемы впрыска топлива
потребовались заметные доработки системы управления двигателем,
обеспечивающие привязку алгоритма управления форсунками к фазам рабочего
цикла цилиндров. По этому, двигатели, оборудованные фазированным
впрыском топлива, дополнительно оснащены датчиком положения
распределительного вала (датчиком фаз). Кроме того, блок управления
такого двигателя потребовалось дооснастить ещё несколькими силовыми
транзисторами, для управления каждой форсункой индивидуально. Кроме
внесения изменений в блок управления двигателем, потребовалось
применение форсунок с более тонким распылом топлива, так как уменьшилась
продолжительность процесса испарения топлива и смешивания его с
воздухом. На некоторых двигателях, дополнительно, это позволило
использовать режим работы при более бедной смеси (дополнительно
потребовалось изменение конструкции впускного коллектора и применение
заслонок завихрителей, для формирования вертикальных потоков воздуха в
цилиндре).
Следует заметить, что в момент пуска двигателя
блок управления двигателем переключается на параллельную схему впрыска
топлива, то есть, включает и выключает все топливные форсунки
одновременно до тех пор, пока не распознает сигнал от датчика положения
распределительного вала.
Дополнительно применяется асинхронный режим
впрыска. В момент, когда водитель очень резко нажимает на педаль
акселератора, некоторые блоки управления могут осуществлять впрыскивание
дополнительного количества топлива несколькими малыми порциями в
цилиндры, которые в данный момент находятся перед или вначале такта
впуска.
Осциллограммы напряжения сигнала управления
форсункой и сигнала от датчика положения дроссельной заслонки системы
фазированного впрыска топлива в момент резкой перегазовки.
4 Осциллограмма напряжения выходного сигнала датчика положения дроссельной заслонки.
6 Осциллограмма напряжения управляющих импульсов топливной форсункой одного из цилиндров.
Как видно из приведённым выше осциллограммам, на
переходных режимах работы двигателя, в данном примере в момент резкого
открытия дроссельной заслонки, система фазированного впрыска топлива
может осуществлять дополнительные циклы впрыска топлива, дополнительно
обогащая таким образом состав приготовляемой топливовоздушной смеси.
Благодаря этому снижается вероятность возникновения пропусков
воспламенения топливовоздушной смеси в цилиндрах при работе двигателя на
переходных режимах.
В системах точечного впрыска топлива подавляющего
большинства двигателей современных автомобилей реализован именно
фазированный впрыск топлива.
Системы непосредственного впрыска топлива
Наиболее современными системами управления
двигателем являются системы с непосредственным впрыскиванием топлива.
Здесь топливная форсунка впрыскивает топливо непосредственно в камеру
сгорания, то есть, во внутренний объём цилиндра. Благодаря этому, при
работе двигателя с низкой нагрузкой (холостой ход, равномерное движение
автомобиля с небольшой скоростью…) удалось достичь приготовления
внутри цилиндра топливовоздушной смеси с неоднородным соотношением
воздух-топливо. Вблизи электродов свечи зажигания образуется нормальная
или немного обогащённая смесь, за счёт чего происходит устойчивое
воспламенение этой смеси от искрового разряда между электродами свечи
зажигания. В остальном объёме цилиндра образуются бедные и сверхбедные
смеси, которые сгорают от пламени горения нормальной по составу смеси
вблизи электродов свечи зажигания. За счёт послойного приготовления
топливовоздушной смеси (состав смеси в объёме камеры сгорания
неоднороден), усреднённый состав приготовляемой и сжигаемой таким
образом топливовоздушной смеси оказывается сверхбедным — соотношение
воздух-топливо при работе двигателя в таком режиме может достигать
значений 30:1…40:1. Для сравнения, на бензиновом двигателе с подачей
топлива во впускной коллектор и оборудованном специальными завихрителями
потока воздуха (для создания послойной смеси в камере сгорания) не
удаётся достичь обеднения топливовоздушной смеси с соотношением
воздух-топливо более 25:1. А, как известно, обеднение топливовоздушной
смеси позволяет заметно снизить количество расходуемого двигателем
топлива.
Системы управления двигателем с непосредственным
впрыскиванием топлива, да и сами двигатели, обслуживаемые подобными
системами, имеют ряд отличий от обычных систем с точечным впрыскиванием
топлива. Это: вертикальные каналы ввода потока воздуха в цилиндры,
поршни с закругленной выборкой для направления топливной смеси в сторону
свечи зажигания, вихревые инжекторы высокого давления, топливный насос
высокого давления. Кроме того, при работе двигателя на сверхбедных
смесях, впрыскивание топлива в камеру сгорания происходит в конце такта
сжатия. Из-за высокого давления в камере сгорания в момент впрыска
топлива, а так же для обеспечения направленного перемещения впрыснутого
топлива к свече зажигания, давление топлива в топливной рейке здесь
существенно увеличено, соответственно изменена и конструкция топливной
форсунки. С целью повышения давления в топливной рейке, кроме
электрического топливного насоса, размещённого внутри бака, здесь
дополнительно применён механический топливный насос высокого давления,
приводимый от распределительного вала двигателя. Механический топливный
насос высокого давления обеспечивает поддержание давления в топливной
рейке на уровне нескольких десятков Bar.
Для обеспечения правильного послойного
образования топливовоздушной смеси, движение воздушного потока внутри
цилиндра было оптимизировано за счёт изменения конструкции двигателя —
изменены форма и направление впускного воздушного канала для создания в
камере сгорания вертикально направленных воздушных потоков. Так же здесь
применена специальная форма днища поршня. За счёт изменённой формы
днища поршня, струя впрыскиваемого форсункой топлива «отражается» от
наклонного углубления в днище поршня и направляется к свече зажигания,
где образуется область с достаточно богатым содержанием топлива.
В связи с повышением давления топлива в топливной
рейке, потребовалось значительно сократить длительность открытия
топливной форсунки, измеряемое здесь в единицах десятых долей милли
Секунды. Для уменьшения инерционности топливных форсунок, величина
управляющего форсунками напряжения была значительно увеличена и
достигает нескольких десятков Вольт. Для управления топливными
форсунками многих систем непосредственного впрыска топлива применяется
специальный модуль, преобразующий низковольтные импульсы от блока
управления двигателем в высоковольтные импульсы для управления
топливными форсунками.
Осциллограммы напряжений сигналов управления топливной форсункой системы непосредственного впрыска топлива.
1 Осциллограмма напряжения на одном из выводов топливной форсунки системы непосредственного впрыска топлива.
2 Осциллограмма напряжения на втором из выводов топливной форсунки системы непосредственного впрыска топлива.
3 Осциллограмма напряжения, воздействующего на обмотку топливной форсунки системы непосредственного впрыска топлива.
Следует отметить, что при работе двигателя на
холостом ходу, для поддержания необходимой температуры нейтрализатора
выхлопных газов приготовление сверхбедной топливовоздушной смеси
периодически чередуется с приготовлением обычный однородной смеси
(послойное смесеобразование чередуется с гомогенным смесеобразованием).
При гомогенном смесеобразовании впрыск топлива в камеру сгорания
происходит не во время такта сжатия, а на такте впуска. Переключения
между послойным и гомогенным смесеобразованием заметны по
незначительному изменению частоты вращения двигателя на холостом ходу.
На определенных режимах работы двигателя возможен
комбинированный режим приготовления смеси, когда топливо впрыскивается
форсунками на такте впуска и дополнительно в конце такта сжатия.
Из-за низкого качества топлива, повышается
степень износа деталей некоторых узлов системы непосредственного
впрыскивания топлива. Высокое содержание серы и нерегламентированных
присадок в бензине фактически сводит на нет экономические, экологические
и мощностные показатели данных двигателей. Поэтому, не многие
производители автомобилей одобряют эксплуатацию таких двигателей в
странах СНГ.
Системы впрыска топлива современных двигателей внутреннего сгорания: бензиновые и дизельные системы
Основным назначением системы впрыска (иное название — инжекторная система) является обеспечение своевременной подачи топлива в рабочие цилиндры ДВС.
В настоящее время подобная система активно используется на дизельных и бензиновых двигателях внутреннего сгорания. Важно понимать, что для каждого типа двигателя система впрыска будет в значительной мере отличаться.
Фото: rsbp (flickr.com/photos/rsbp/)
Так в бензиновых ДВС процесс впрыска способствует образованию топливовоздушной смеси, после чего происходит ее принудительное воспламенение от искры.
В дизельных же ДВС подача топлива осуществляется под высоким давлением, когда одна часть топливной смеси соединяется с горячим сжатым воздухом и почти моментально самовоспламеняется.
Система впрыска остается ключевой составной частью общей топливной системы любого автомобиля. Центральным рабочим элементом подобной системы является топливная форсунка (инжектор).
Как уже было сказано ранее в бензиновых двигателях и дизелях применяются различные виды систем впрыска, которые мы и рассмотрим обзорно в этой статье, а детально разберем в последующих публикациях.
Виды систем впрыска на бензиновых ДВС
На бензиновых двигателях используются следующие системы подачи топлива – центральный впрыск (моно впрыск), распределенный впрыск (многоточечный), комбинированный впрыск и непосредственный впрыск.
Центральный впрыск
Подача топлива в системе центрального впрыска происходит за счет топливной форсунки, которая расположена во впускном коллекторе. Поскольку форсунка всего одна, то эту систему впрыска называют еще – моновпрыск.
Системы этого вида на сегодняшний день утратили свою актуальность, поэтому в новых моделях автомобилей они не предусмотрены, впрочем, в некоторых старых моделях некоторых автомобильных марок их можно встретить.
К преимуществам моно впрыска можно отнести надежность и простоту использования. Недостатками подобной системы являются низкий уровень экологичности двигателя и высокий расход топлива.
Распределенный впрыск
Система многоточечного впрыска предусматривает подачу горючего отдельно на каждый цилиндр, оснащенный собственной топливной форсункой. При этом ТВС образуется только во впускном коллекторе.
В настоящее время большинство бензиновых двигателей оснащено системой распределенной подачи топлива. Преимуществами подобной системы являются высокая экологичность, оптимальный расход топлива, умеренные требования к качеству потребляемого топлива.
Непосредственный впрыск
Одна из наиболее совершенных и прогрессивных систем впрыска. Принцип работы подобной системы заключается в прямой подаче (впрыске) топлива в камеру сгорания цилиндров.
Система непосредственной подачи топлива позволяет получать качественный состав ТВС на всех этапах работы ДВС с целью улучшения процесса сгорания горючей смеси, увеличения рабочей мощности двигателя, снижения уровня отработанных газов.
К недостаткам данной системы впрыска можно отнести сложную конструкцию и высокие требования к качеству топлива.
Комбинированный впрыск
Система данного типа объединила в себе две системы – непосредственный и распределенный впрыск. Зачастую она применяется для уменьшения выбросов токсичных элементов и отработанных газов, благодаря чему достигается высокие показатели экологичности двигателя.
Все системы подачи топлива, пнименяемые на бензиновых ДВС могут быть оснащены механическими или электронными устройствами управления, из которых последняя наиболее совершенна, поскольку обеспечивает наилучшие показатели экономичности и экологичности двигателя.
Подача топлива в подобных системах может осуществляться непрерывно или дискретно (импульсно). По мнению специалистов, импульсная подача топлива является наиболее целесообразной и эффективной и на сегодняшний день применяется во всех современных двигателях.
Виды систем впрыска дизельных ДВС
На современных дизельных двигателях применяются такие системы впрыска, как система насос-форсунки, система Сommon Rail, система с рядным или распределительным ТНВД (топливным насосом высокого давления).
Наиболее востребованные и считаются наиболее прогрессивными из них системы: Сommon Rail и насос-форсунки, о которых ниже поговорим чуть подробнее.
ТНВД является центральным элементом любой топливной системы дизельного двигателя.
В дизелях подача горючей смеси может осуществляться как в предварительную камеру, так и напрямую в камеру сгорания (непосредственный впрыск).
На сегодняшний день предпочтение отдается системе непосредственного впрыска, которую отличает повышенный уровень шума и менее плавная работа двигателя, по сравнению с впрыском в предварительную камеру, но при этом обеспечивается гораздо более важный показатель – экономичность.
Система впрыска насос-форсунки
Подобная система применяется для подачи и впрыска топливной смеси под высоким давлением центральным устройством – насос-форсунками.
По названию можно догадаться, что ключевой особенностью данной системы является то, что в единственном устройстве (насос-форсунке) объединены сразу две функции: создание давления и впрыск.
Конструктивным недостатком данной системы является то, что насос оснащен приводом постоянного типа от распредвала двигателя (не отключаемый), который приводит к быстрому износу конструкции. Из-за этого производители все чаще делают выбор в пользу системы впрыска Сommon Rail.
Система впрыска Сommon Rail (аккумуляторный впрыск)
Это более совершенная система подачи ТС для большинства дизельных двигателей. Ее название пошло от основного конструктивного элемента – топливной рампы, общей для всех форсунок. Сommon Rail в переводе с английского как раз и означает – общая рампа.
В такой системе топливо подается к топливным форсункам от рампы, которую еще называют аккумулятором высокого давления, из-за чего у системы появилось и второе название – аккумуляторная система впрыска.
В системе Сommon Rail предусмотрено проведение трех этапов впрыска – предварительного, основного и дополнительного. Это позволяет уменьшить шум и вибрации двигателя, сделать более эффективными процесс самовоспламенения топлива, уменьшить количество вредных выбросов в атмосферу.
Для управления системами впрыска на дизелях предусмотрено наличие механических и электронных устройств. Системы на механике позволяют контролировать рабочее давление, объем и момент впрыска топлива. Электронные системы предусматривают более эффективное управление дизельными ДВС в целом.
лучших систем EFI послепродажного обслуживания (обзор и руководство по покупке) в 2021 году
Думаете о модернизации карбюраторного двигателя до системы EFI на вторичном рынке? Системы электронного впрыска топлива (EFI) становятся все более популярными среди автолюбителей, которые хотят повысить эффективность и мощность. Добавление системы EFI к вашему автомобилю может поднять ваш двигатель на совершенно новый уровень благодаря цифровой технологии, которая контролирует поток воздуха и топлива через дроссельную заслонку, порт или процесс прямого впрыска.Благодаря усовершенствованной и умной технологии эти инновационные системы обеспечивают больше, чем просто повышенную эффективность — они также обеспечивают лучшую экономию топлива, помогая вам реже заправляться.
Обеспокоены тем, что преобразование вашего карбюраторного двигателя в систему EFI будет слишком сложной задачей? С одной из лучших послепродажных систем EFI это может быть интересный проект. Вам просто нужно убедиться, что вы провели исследование и выбрали систему EFI, которая подходит вашему автомобилю, вашему двигателю и вашим потребностям. Если вы ищете послепродажную систему EFI для легкового автомобиля, легкого грузовика или гоночного двигателя, ознакомьтесь с нашими подборками лучших вариантов прямо здесь.
Преимущества систем EFI на вторичном рынке
- Устранение необходимости в карбюраторе. Карбюраторы необходимо регулировать механически, чтобы контролировать расход воздуха и топлива. Однако со временем они могут расстроиться и рискнуть потерпеть неудачу, если их не корректировать постоянно. Системы EFI устраняют необходимость в карбюраторе и продолжают регулировать поток воздуха и топлива независимо с расчетами, выполняемыми электронным блоком управления (ЭБУ). Это требует минимальных усилий с вашей стороны при настройке системы.
- Меньший расход топлива . Системы EFI более экономичны, чем карбюраторные двигатели. Это связано с тем, что электронная система постоянно регулирует соотношение воздух-топливо для обеспечения оптимального уровня. С другой стороны, карбюраторные двигатели могут обеспечивать повышенное соотношение топлива к воздуху, что может привести к большему расходу топлива.
- Соответствует условиям эксплуатации двигателя. Ваш двигатель может иметь разную потребность в топливе или воздухе в зависимости от условий эксплуатации.Системы EFI могут непрерывно контролировать условия эксплуатации и регулировать соотношение воздуха и топлива в зависимости от температуры окружающей среды, высоты, условий движения и других требований двигателя, таких как холодный запуск или режим выбега.
- Поддерживайте оптимальную работу двигателя. Двигатели, использующие системы EFI, часто обеспечивают более высокий крутящий момент, чем карбюраторные двигатели. Системы EFI могут оптимизировать мощность, угол опережения зажигания и соотношение воздуха и топлива при различных оборотах двигателя, чтобы обеспечить стабильную производительность.
Типы систем EFI
Одноточечный
Одноточечный инжектор или инжектор корпуса дроссельной заслонки имеет один инжектор, установленный на корпусе дроссельной заслонки. Топливо впрыскивается в двигатель быстрыми короткими очередями, что создает гудение при запуске двигателя. По сравнению с карбюратором, эта система имеет лучшие характеристики холодного пуска и лучше регулирует подачу воздуха к топливной смеси.
Multipoint
В современных системах EFI обычно используется многоточечный топливный инжектор (MPFI).Он имеет отдельную топливную форсунку для каждого цилиндра, которая впрыскивает топливо непосредственно во впускной канал каждого цилиндра. Форсунки могут быть синхронизированы для одновременного распыления на все цилиндры или для совпадения с ходом впуска соответствующего цилиндра.
Прямой
Прямой топливный инжектор распыляет топливо непосредственно в камеру сгорания, вместо того, чтобы направлять его во впускной клапан в случае газового двигателя или в камеру предварительного сгорания в случае дизельного двигателя. Этот тип инжектора имеет игольчатый клапан на сопле, который приводится в действие соленоидом для регулирования давления жидкости, подаваемой в цилиндр двигателя.Поскольку они устанавливаются так близко к цилиндрам, они подвергаются большему нагреву и требуют материалов более высокого качества, которые могут выдерживать высокие температуры. Поэтому они дороже.
Ведущие бренды
Holley
Holley — автомобильный бренд, производящий автомобильные топливные системы более 100 лет. Он был рожден Брэдфордом, Пенн, братьями Джорджем и Эрлом Холли в конце 1800-х годов. Сегодня компания разрабатывает топливные насосы, впускные коллекторы, системы EFI и миллионы карбюраторов.Серия слияний на протяжении многих лет привела к поглощению под ее эгидой других брендов, включая MSD Ignition, Accel, Powerteq и Racepak. Если вы хотите опробовать один из его продуктов, обратите внимание на комплект New Holley Sniper EFI.
FiTech
FiTech со штаб-квартирой в Риверсайде, Калифорния, производит одни из лучших топливных систем. Помимо систем EFI, она также производит топливные насосы, топливные фильтры, манометры и регуляторы давления топлива. Система FiTech 30021 EFI и FiTech 30005 Easy Street EFI — одни из лучших систем EFI с инновационным дизайном.
Цены на системы EFI для вторичного рынка
- Менее 1000 долларов США : Системы EFI в этом ценовом диапазоне могут управлять синхронизацией впрыска в зависимости от скорости, нагрузки и типа вождения автомобиля. Их можно запрограммировать для оптимизации расхода топлива, особенно в тяжелых дизельных двигателях.
- 1000 долларов и выше: Большинство систем EFI немного дороговаты, но это часто означает, что вы получаете надежную систему, которая может создать программу, подходящую для вашего конкретного приложения.Таким образом, в этом ценовом диапазоне вы можете рассчитывать найти систему EFI с программируемой системой управления, которую вы можете контролировать и контролировать с отдельного портативного монитора.
Основные характеристики
Тип системы
Как мы упоминали выше, существует несколько различных типов систем EFI — одноточечные, многоточечные и прямые. Когда вы выбираете вариант послепродажного обслуживания, важно определить, какой тип лучше всего подходит вашему автомобилю и вашему двигателю. У каждого есть свои плюсы и минусы, и дизайн у трех типов различается.Тип, который вы выберете, повлияет на все, от метода установки до стоимости системы EFI, поэтому обязательно учтите эту ключевую деталь, прежде чем тратить цент.
Размер или выходная мощность
После того, как вы остановились на типе вторичной системы EFI, важно обратить внимание на размер или выходную мощность тех, которые вы рассматриваете. Это критически важно, так как размер должен соответствовать требованиям к воздушному потоку и топливу вашего двигателя, чтобы обеспечить мощность, которую вы хотите (или к которой вы привыкли). Наличие системы, соответствующей размеру вашего двигателя, выходной мощности и мощности, обеспечит вам максимальную производительность после ее установки.Посмотрите на выходную мощность инжектора системы EFI и подумайте о размере вашего двигателя. Часто он приводится в диапазоне — например, вы увидите максимальную мощность от 275 до 400 для стандартного двигателя объемом от 250 до 400 куб. или от 600 до 750 лошадиных сил для двигателя от 350 до 500 куб. размер двигателя.
Технологии
Технологии — одна из главных причин для установки вторичной системы EFI на вашем автомобиле. В последние годы эти системы становятся все более умными, и они не похожи на старые системы EFI, которым требовались ноутбуки и специальные компьютерные знания, чтобы обеспечить максимальную эффективность вашего автомобиля.Современные системы просты в установке и эксплуатации с использованием впечатляюще простых технологий. Чтобы найти лучшие и самые современные варианты, ищите системы EFI, которые включают возможность самонастройки. Вы также можете найти системы, которые включают портативные тюнеры для упрощения управления и настройки.
Прочие соображения
- Совместимость: Любая запасная часть, которую вы покупаете, должна быть совместима с вашим автомобилем, чтобы избежать проблем с установкой. Лучший способ получить подходящую систему EFI — это найти ее, указав год, марку и модель вашего автомобиля.Если по какой-либо причине это не помогает, попробуйте найти номер детали OEM вашего автомобиля, который часто указывается в системе EFI.
- Топливо: Учитывайте также тип топлива, которое использует ваш автомобиль. Некоторые системы EFI поставляются с полной топливной системой, состоящей из топливного насоса и фильтров, которые могут не работать как с газом, так и с дизельным топливом.
- Гарантия: Гарантия служит доказательством того, что система EFI была разработана с использованием высококачественных материалов. Это поможет вам получить новую систему EFI или бесплатные услуги от поставщика в случае, если купленная вами перестает работать из-за дефектов изготовления.
Обзоры и рекомендации лучших систем EFI для вторичного рынка 2021
Советы
- Если вы планируете использовать сумматор мощности (например, нагнетатель) с вашей системой EFI, вам следует подумать о системе, совместимой с вашим сумматором мощности.
- Если ваш двигатель — новая сборка, подумайте о том, чтобы проконсультироваться со специалистом по сборке двигателей перед установкой системы EFI.
- Системы EFI требуют более высокого давления топлива для эффективной работы.Следовательно, вам следует подумать о модернизации топливной магистрали для соответствия системным требованиям EFI.
- Обычно системы EFI не включают резервуар для топлива по сравнению с карбюратором, который имеет резервуары для хранения топлива. Поэтому вам также следует подумать об установке топливного бака, предназначенного для систем EFI.
- Расположение топливного насоса очень важно, поскольку он не может выдерживать более высокие температуры в течение длительного времени. Обязательно устанавливайте его в таком месте, где он может легко остыть.
Часто задаваемые вопросы
В: Как работает система EFI послепродажного обслуживания?
В системе EFI на вторичном рынке используется подача топлива под высоким давлением к форсунке.Он также использует компьютерное управление и в целом увеличивает мощность и топливную экономичность транспортного средства. Вся система управляется электроникой.
В: Что мне нужно для установки системы EFI на вторичном рынке?
Вам потребуются дроссельные заслонки, подходящий коллектор, топливный насос высокого давления, форсунки и фильтр. Помимо этого, вам также понадобятся регулятор, комплект топливной рампы, ЭБУ и возвратный трубопровод к топливному элементу.
В: Нужно ли использовать воздухоочистители в системе EFI?
Да, мы рекомендуем использовать чистящие средства.Можно использовать любой стандартный послепродажный очиститель.
В: Система EFI лучше карбюратора?
Это зависит от вашего автомобиля, двигателя и производительности, которую вы сейчас получаете. Для тех, кто хочет увеличить мощность и производительность, послепродажная система EFI может стать отличным обновлением по сравнению с текущим карбюраторным двигателем. Однако, если вас не беспокоит производительность или мощность, вы можете не увидеть огромной выгоды от стоимости покупки и установки системы EFI.
Q: Сколько лошадиных сил добавляет система EFI?
Количество лошадиных сил зависит от размера вашего двигателя и выходной мощности системы EFI, которую вы покупаете. Как правило, система EFI улучшит ваш двигатель, но не может напрямую увеличить вашу мощность. Большинство вторичных систем EFI могут работать с двигателями мощностью от 450 до 600 лошадиных сил, но некоторые из них подходят и для мощности до 1200 лошадиных сил.
Заключительные мысли
Наш выбор в качестве лучшей системы EFI для вторичного рынка — это комплект EFI New Holley Sniper 550511, поскольку он обеспечивает большую функциональность.
В качестве недорогого варианта вам следует рассмотреть систему FiTech 30021 Go EFI.
Go EFI Systems Archives — FiTech Fuel Injection
ВНИМАТЕЛЬНО ПРОЧИТАЙТЕ СЛЕДУЮЩИЕ УСЛОВИЯ ИСПОЛЬЗОВАНИЯ ПЕРЕД ИСПОЛЬЗОВАНИЕМ ДАННОГО ВЕБ-САЙТА. Все пользователи этого сайта соглашаются с тем, что доступ к нему и его использование регулируются следующими положениями и условиями, а также другим применимым законодательством. Если вы не согласны с этими условиями, пожалуйста, не используйте этот сайт.
Авторские права
Весь контент, включенный в этот сайт, включая, помимо прочего, текст, графику или код, защищен авторским правом как коллективная работа в соответствии с законами США и другими законами об авторских правах и является собственностью FiTech Fuel Injection.Коллективная работа включает в себя работы, которые лицензированы FiTech Fuel Injection. Авторское право 2019, FiTech Fuel Injection, ВСЕ ПРАВА ЗАЩИЩЕНЫ. Разрешается копировать в электронном виде и распечатывать бумажные копии частей этого сайта с единственной целью размещения заказа на FiTech Fuel Injection или покупки продуктов FiTech Fuel Injection. Вы можете отображать и, с учетом любых явно заявленных ограничений или ограничений, касающихся конкретного материала, загружать или распечатывать части материала из различных областей сайта исключительно для вашего собственного некоммерческого использования или для размещения заказа в FiTech Fuel Injection или приобрести продукцию FiTech Fuel Injection.Любое другое использование, включая, помимо прочего, воспроизведение, распространение, отображение или передачу содержания этого сайта, строго запрещено, если только это не разрешено FiTech Fuel Injection. Вы также соглашаетесь не изменять и не удалять какие-либо уведомления о правах собственности из материалов, загруженных с сайта.
Товарные знаки
Все товарные знаки, знаки обслуживания и торговые наименования FiTech Fuel Injection, используемые на сайте, являются товарными знаками или зарегистрированными товарными знаками FiTech Fuel Injection
Заявление об отказе от гарантий
Этот сайт, а также материалы и продукты на нем предоставляются «как есть »и без каких-либо явных или подразумеваемых гарантий.В максимальной степени, допустимой в соответствии с действующим законодательством, FiTech Fuel Injection отказывается от всех гарантий, явных или подразумеваемых, включая, помимо прочего, подразумеваемые гарантии товарной пригодности и пригодности для конкретной цели и ненарушения прав. FiTech Fuel Injection не заявляет и не гарантирует, что функции, содержащиеся на сайте, будут бесперебойными или безошибочными, что дефекты будут исправлены или что этот сайт или сервер, который делает сайт доступным, не содержат вирусов или других вредоносных компонентов. .FiTech Fuel Injection не дает никаких гарантий или заверений в отношении использования материалов на этом сайте с точки зрения их правильности, точности, адекватности, полезности, своевременности, надежности и т. Д. В некоторых штатах не допускаются ограничения или исключения из гарантий, поэтому указанные выше ограничения могут не относиться к вам.
Ограничение ответственности
FiTech Fuel Injection не несет ответственности за какие-либо особые или косвенные убытки, возникшие в результате использования или невозможности использования материалов на этом сайте или производительности продуктов, даже если FiTech Fuel Injection был уведомлен о возможности таких повреждений.Применимое законодательство может не допускать ограничения исключения ответственности или случайных или косвенных убытков, поэтому вышеуказанное ограничение или исключение может не относиться к вам.
Типографические ошибки
В случае, если продукт FiTech Fuel Injection ошибочно указан по неправильной цене, FiTech Fuel Injection оставляет за собой право отклонить или отменить любые заказы, размещенные на продукт, указанный по неправильной цене. FiTech Fuel Injection оставляет за собой право отклонить или отменить любые такие заказы независимо от того, был ли заказ подтвержден и с вашей кредитной карты снята оплата.Если с вашей кредитной карты уже была снята оплата за покупку, и ваш заказ отменен, FiTech Fuel Injection предоставит кредит на ваш счет кредитной карты в размере неверной цены.
Срок; Прекращение действия
Эти условия применяются к вам после вашего доступа к сайту и / или завершения процесса регистрации или совершения покупок. Эти условия или любая их часть могут быть прекращены FiTech Fuel Injection без предварительного уведомления в любое время и по любой причине.Положения, касающиеся авторских прав, товарных знаков, отказа от ответственности, ограничения ответственности, компенсации и прочего, остаются в силе после прекращения действия.
Уведомление
FiTech Fuel Injection может доставить вам уведомление по электронной почте, посредством общего уведомления на сайте или другим надежным способом на адрес, который вы предоставили FiTech Fuel Injection.
Разное
Использование вами этого сайта регулируется во всех отношениях законами штата Калифорния, США.S.A., без учета положений о выборе права, а не в соответствии с Конвенцией ООН 1980 г. о договорах международной купли-продажи товаров. Вы соглашаетесь с тем, что юрисдикция и место проведения любого судебного разбирательства, прямо или косвенно вытекающего из этого сайта или связанного с ним (включая, помимо прочего, покупку продуктов FiTech Fuel Injection), будут находиться в судах штата или федеральных судах, расположенных в округе Лос-Анджелес, Калифорния. Любые основания для иска или претензии, которые могут возникнуть в отношении сайта (включая, помимо прочего, покупку продуктов FiTech Fuel Injection), должны быть предъявлены в течение одного (1) года после возникновения претензии или основания для иска.Неспособность FiTech Fuel Injection настаивать на строгом выполнении какого-либо положения настоящих положений и условий не должна толковаться как отказ от какого-либо положения или права. Ни поведение сторон, ни торговая практика не должны приводить к изменению каких-либо из этих условий. FiTech Fuel Injection может передать свои права и обязанности по настоящему Соглашению любой стороне в любое время без предварительного уведомления.
Использование сайта
Преследование в любой форме или в любой форме на сайте, в том числе по электронной почте, в чате, а также с использованием нецензурной лексики или ненормативной лексики, строго запрещено.Выдача себя за других, включая FiTech Fuel Injection или другого лицензированного сотрудника, хозяина или представителя, а также других участников или посетителей сайта запрещена. Вы не можете загружать, распространять или иным образом публиковать через сайт любой контент, который является клеветническим, дискредитирующим, непристойным, угрожающим, нарушающим права на неприкосновенность частной жизни или гласности, оскорбительным, незаконным или иным образом нежелательным, который может представлять собой или поощрять уголовное преступление, нарушать права любой стороны или которые могут иным образом повлечь за собой ответственность или нарушить какой-либо закон.Вы не можете загружать коммерческий контент на сайт или использовать сайт, чтобы побуждать других присоединиться или стать членами любой другой коммерческой онлайн-службы или другой организации.
Заявление об ограничении ответственности
FiTech Fuel Injection не просматривает и не может просматривать все сообщения и материалы, размещенные или созданные пользователями, обращающимися к сайту, и не несет никакой ответственности за содержание этих сообщений и материалов. Вы признаете, что, предоставляя вам возможность просматривать и распространять пользовательский контент на сайте, FiTech Fuel Injection просто действует как пассивный канал для такого распространения и не берет на себя никаких обязательств или ответственности в отношении любого контента или действий на сайте сайт.Однако FiTech Fuel Injection оставляет за собой право блокировать или удалять сообщения или материалы, которые она считает (а) оскорбительными, дискредитирующими или непристойными, (б) мошенническими, вводящими в заблуждение или вводящими в заблуждение, (в) нарушающими авторские права, товарный знак. или же; другое право интеллектуальной собственности другого лица или (d) оскорбительное или иным образом неприемлемое для FiTech Fuel Injection по ее собственному усмотрению.
Возмещение убытков
Вы соглашаетесь возместить, защитить и обезопасить FiTech Fuel Injection, ее должностных лиц, директоров, сотрудников, агентов, лицензиаров и поставщиков (совместно именуемые «Поставщики услуг») от всех убытков, расходов, убытков и затрат , включая разумные гонорары адвокатов в результате любого нарушения этих условий или любой деятельности, связанной с вашей учетной записью (включая небрежное или противоправное поведение) вами или любым другим лицом, осуществляющим доступ к сайту с помощью вашей учетной записи в Интернете.
Сторонние ссылки
В попытке повысить ценность для наших посетителей, FiTech Fuel Injection может ссылаться на сайты третьих сторон. Однако, даже если третья сторона связана с FiTech Fuel Injection, FiTech Fuel Injection не контролирует эти связанные сайты, на всех из которых действуют отдельные правила конфиденциальности и сбора данных, независимо от FiTech Fuel Injection. Эти связанные сайты предназначены только для вашего удобства, и поэтому вы получаете к ним доступ на свой страх и риск.Тем не менее, FiTech Fuel Injection стремится защитить целостность своего веб-сайта и размещенных на нем ссылок и поэтому запрашивает любые отзывы не только о своем собственном сайте, но и о сайтах, на которые он ссылается (в том числе, если конкретная ссылка не работает). .
Архив топливных систем — FiTech Fuel Injection
ВНИМАТЕЛЬНО ПРОЧИТАЙТЕ СЛЕДУЮЩИЕ УСЛОВИЯ ИСПОЛЬЗОВАНИЯ ПЕРЕД ИСПОЛЬЗОВАНИЕМ ДАННОГО ВЕБ-САЙТА. Все пользователи этого сайта соглашаются с тем, что доступ к нему и его использование регулируются следующими положениями и условиями, а также другим применимым законодательством.Если вы не согласны с этими условиями, пожалуйста, не используйте этот сайт.
Авторские права
Весь контент, включенный в этот сайт, включая, помимо прочего, текст, графику или код, защищен авторским правом как коллективная работа в соответствии с законами США и другими законами об авторских правах и является собственностью FiTech Fuel Injection. Коллективная работа включает в себя работы, которые лицензированы FiTech Fuel Injection. Авторское право 2019, FiTech Fuel Injection, ВСЕ ПРАВА ЗАЩИЩЕНЫ. Разрешается копировать в электронном виде и распечатывать бумажные копии частей этого сайта с единственной целью размещения заказа на FiTech Fuel Injection или покупки продуктов FiTech Fuel Injection.Вы можете отображать и, с учетом любых явно заявленных ограничений или ограничений, касающихся конкретного материала, загружать или распечатывать части материала из различных областей сайта исключительно для вашего собственного некоммерческого использования или для размещения заказа в FiTech Fuel Injection или приобрести продукцию FiTech Fuel Injection. Любое другое использование, включая, помимо прочего, воспроизведение, распространение, отображение или передачу содержания этого сайта, строго запрещено, если только это не разрешено FiTech Fuel Injection.Вы также соглашаетесь не изменять и не удалять какие-либо уведомления о правах собственности из материалов, загруженных с сайта.
Товарные знаки
Все товарные знаки, знаки обслуживания и торговые наименования FiTech Fuel Injection, используемые на сайте, являются товарными знаками или зарегистрированными товарными знаками FiTech Fuel Injection
Заявление об отказе от гарантий
Этот сайт, а также материалы и продукты на нем предоставляются «как есть »и без каких-либо явных или подразумеваемых гарантий. В максимальной степени, допустимой в соответствии с действующим законодательством, FiTech Fuel Injection отказывается от всех гарантий, явных или подразумеваемых, включая, помимо прочего, подразумеваемые гарантии товарной пригодности и пригодности для конкретной цели и ненарушения прав.FiTech Fuel Injection не заявляет и не гарантирует, что функции, содержащиеся на сайте, будут бесперебойными или безошибочными, что дефекты будут исправлены или что этот сайт или сервер, который делает сайт доступным, не содержат вирусов или других вредоносных компонентов. . FiTech Fuel Injection не дает никаких гарантий или заверений в отношении использования материалов на этом сайте с точки зрения их правильности, точности, адекватности, полезности, своевременности, надежности и т. Д. В некоторых штатах не допускаются ограничения или исключения из гарантий, поэтому указанные выше ограничения могут не относиться к вам.
Ограничение ответственности
FiTech Fuel Injection не несет ответственности за какие-либо особые или косвенные убытки, возникшие в результате использования или невозможности использования материалов на этом сайте или производительности продуктов, даже если FiTech Fuel Injection был уведомлен о возможности таких повреждений. Применимое законодательство может не допускать ограничения исключения ответственности или случайных или косвенных убытков, поэтому вышеуказанное ограничение или исключение может не относиться к вам.
Типографические ошибки
В случае, если продукт FiTech Fuel Injection ошибочно указан по неправильной цене, FiTech Fuel Injection оставляет за собой право отклонить или отменить любые заказы, размещенные на продукт, указанный по неправильной цене. FiTech Fuel Injection оставляет за собой право отклонить или отменить любые такие заказы независимо от того, был ли заказ подтвержден и с вашей кредитной карты снята оплата. Если с вашей кредитной карты уже была снята оплата за покупку, и ваш заказ отменен, FiTech Fuel Injection предоставит кредит на ваш счет кредитной карты в размере неверной цены.
Срок; Прекращение действия
Эти условия применяются к вам после вашего доступа к сайту и / или завершения процесса регистрации или совершения покупок. Эти условия или любая их часть могут быть прекращены FiTech Fuel Injection без предварительного уведомления в любое время и по любой причине. Положения, касающиеся авторских прав, товарных знаков, отказа от ответственности, ограничения ответственности, компенсации и прочего, остаются в силе после прекращения действия.
Уведомление
FiTech Fuel Injection может доставить вам уведомление по электронной почте, посредством общего уведомления на сайте или другим надежным способом на адрес, который вы предоставили FiTech Fuel Injection.
Разное
Использование вами этого сайта во всех отношениях регулируется законами штата Калифорния, США, без учета положений о выборе закона, а не Конвенцией ООН 1980 года о договорах международной купли-продажи товаров. . Вы соглашаетесь с тем, что юрисдикция и место проведения любого судебного разбирательства, прямо или косвенно вытекающего из этого сайта или связанного с ним (включая, помимо прочего, покупку продуктов FiTech Fuel Injection), будут находиться в судах штата или федеральных судах, расположенных в округе Лос-Анджелес, Калифорния.Любые основания для иска или претензии, которые могут возникнуть в отношении сайта (включая, помимо прочего, покупку продуктов FiTech Fuel Injection), должны быть предъявлены в течение одного (1) года после возникновения претензии или основания для иска. Неспособность FiTech Fuel Injection настаивать на строгом выполнении какого-либо положения настоящих положений и условий не должна толковаться как отказ от какого-либо положения или права. Ни поведение сторон, ни торговая практика не должны приводить к изменению каких-либо из этих условий.FiTech Fuel Injection может передать свои права и обязанности по настоящему Соглашению любой стороне в любое время без предварительного уведомления.
Использование сайта
Преследование в любой форме или в любой форме на сайте, в том числе по электронной почте, в чате, а также с использованием нецензурной лексики или ненормативной лексики, строго запрещено. Выдача себя за других, включая FiTech Fuel Injection или другого лицензированного сотрудника, хозяина или представителя, а также других участников или посетителей сайта запрещена. Вы не можете загружать, распространять или иным образом публиковать через сайт любой контент, который является клеветническим, дискредитирующим, непристойным, угрожающим, нарушающим права на неприкосновенность частной жизни или гласности, оскорбительным, незаконным или иным образом нежелательным, который может представлять собой или поощрять уголовное преступление, нарушать права любой стороны или которые могут иным образом повлечь за собой ответственность или нарушить какой-либо закон.Вы не можете загружать коммерческий контент на сайт или использовать сайт, чтобы побуждать других присоединиться или стать членами любой другой коммерческой онлайн-службы или другой организации.
Заявление об ограничении ответственности
FiTech Fuel Injection не просматривает и не может просматривать все сообщения и материалы, размещенные или созданные пользователями, обращающимися к сайту, и не несет никакой ответственности за содержание этих сообщений и материалов. Вы признаете, что, предоставляя вам возможность просматривать и распространять пользовательский контент на сайте, FiTech Fuel Injection просто действует как пассивный канал для такого распространения и не берет на себя никаких обязательств или ответственности в отношении любого контента или действий на сайте сайт.Однако FiTech Fuel Injection оставляет за собой право блокировать или удалять сообщения или материалы, которые она считает (а) оскорбительными, дискредитирующими или непристойными, (б) мошенническими, вводящими в заблуждение или вводящими в заблуждение, (в) нарушающими авторские права, товарный знак. или же; другое право интеллектуальной собственности другого лица или (d) оскорбительное или иным образом неприемлемое для FiTech Fuel Injection по ее собственному усмотрению.
Возмещение убытков
Вы соглашаетесь возместить, защитить и обезопасить FiTech Fuel Injection, ее должностных лиц, директоров, сотрудников, агентов, лицензиаров и поставщиков (совместно именуемые «Поставщики услуг») от всех убытков, расходов, убытков и затрат , включая разумные гонорары адвокатов в результате любого нарушения этих условий или любой деятельности, связанной с вашей учетной записью (включая небрежное или противоправное поведение) вами или любым другим лицом, осуществляющим доступ к сайту с помощью вашей учетной записи в Интернете.
Сторонние ссылки
В попытке повысить ценность для наших посетителей, FiTech Fuel Injection может ссылаться на сайты третьих сторон. Однако, даже если третья сторона связана с FiTech Fuel Injection, FiTech Fuel Injection не контролирует эти связанные сайты, на всех из которых действуют отдельные правила конфиденциальности и сбора данных, независимо от FiTech Fuel Injection. Эти связанные сайты предназначены только для вашего удобства, и поэтому вы получаете к ним доступ на свой страх и риск.Тем не менее, FiTech Fuel Injection стремится защитить целостность своего веб-сайта и размещенных на нем ссылок и поэтому запрашивает любые отзывы не только о своем собственном сайте, но и о сайтах, на которые он ссылается (в том числе, если конкретная ссылка не работает). .
Силовые установки — системы впрыска топлива
Датчик температуры наружного воздуха
Большинство самолетов также оснащены датчиком температуры наружного воздуха (OAT), откалиброванным как по градусам Цельсия, так и по Фаренгейту. Он обеспечивает температуру наружного или окружающего воздуха для расчета истинной воздушной скорости и полезен при обнаружении возможных условий обледенения.
Системы впрыска топлива
В системе впрыска топливо впрыскивается непосредственно в цилиндры или непосредственно перед впускным клапаном. Воздухозаборник для системы впрыска топлива аналогичен воздухозаборнику в карбюраторной системе с альтернативным источником воздуха, расположенным внутри капота двигателя. Этот источник используется, если внешний источник воздуха заблокирован. Альтернативный источник воздуха обычно работает автоматически, с резервной ручной системой, которую можно использовать в случае неисправности автоматической функции.
Система впрыска топлива обычно включает шесть основных компонентов: топливный насос с приводом от двигателя, блок управления топливом-воздухом, топливный коллектор (распределитель топлива), выпускные форсунки, вспомогательный топливный насос и индикаторы давления / расхода топлива. [Рисунок 7-13]
Рисунок 7-13. Система впрыска топлива. [щелкните изображение, чтобы увеличить] Вспомогательный топливный насос под давлением подает топливо в блок управления топливно-воздушным потоком для запуска двигателя и / или аварийного использования. После запуска топливный насос с приводом от двигателя под давлением подает топливо из топливного бака в блок управления топливно-воздушным потоком.
Этот блок управления, который, по сути, заменяет карбюратор, измеряет топливо в соответствии с настройкой управления смесью и отправляет его на клапан топливного коллектора со скоростью, контролируемой дроссельной заслонкой.
Достигнув клапана топливного коллектора, топливо распределяется по отдельным форсункам для слива топлива. Выпускные форсунки, расположенные в каждой головке блока цилиндров, впрыскивают топливно-воздушную смесь непосредственно во впускное отверстие каждого цилиндра.
Считается, что система впрыска топлива менее восприимчива к обледенению, чем карбюраторная, но ударное обледенение воздухозаборника возможно в любой системе.Ударное обледенение возникает, когда лед образуется на внешней стороне самолета и блокирует отверстия, такие как воздухозаборник для системы впрыска.
Преимущества использования впрыска топлива:
- Уменьшение испарительного обледенения
- Лучший расход топлива
- Более быстрый отклик дроссельной заслонки
- Точное управление смесью
- Лучшее распределение топлива
- Более легкий запуск в холодную погоду
Следующее К недостаткам использования впрыска топлива относятся:
- Сложность запуска горячего двигателя
- Паровые пробки при наземных операциях в жаркие дни
- Проблемы, связанные с перезапуском двигателя, который выключается из-за нехватки топлива
Система впрыска топлива — обзор
13.3.4 Пневматический впрыск топлива
Системы впрыска топлива незаменимы при усовершенствовании двухтактных двигателей с целью повышения их преимуществ в автомобильных двигателях. Имеется множество отчетов о разработках инжекторов [35–42], но очень немногие содержат достаточную информацию, относящуюся к подробным характеристикам распыляемых капель. Системы распыления и впрыска были тщательно исследованы, особенно в дизельных двигателях. Двухтактный двигатель включает в себя сложные процессы, такие как процесс продувки, циклическое изменение и пропуски зажигания, которые тесно связаны с распространением и отражением волны давления.Хотя процесс продувки был ключевой особенностью при разработке двухтактных двигателей [20,22–24,43–46], имеется очень мало экспериментальных данных, объясняющих взаимосвязь между испарением аэрозоля бензина, образованием смеси и продувкой. процесс [47–54].
Для небольших двухтактных двигателей прямой впрыск топлива рассматривается как способ решения проблем неполного сгорания и чрезмерной концентрации углеводородов в выхлопных газах. В частности, пневматический впрыск топлива был разработан как мощный инструмент для создания более горючей топливно-воздушной смеси при обедненных условиях сгорания.Пневматический впрыск использует сжатый воздух для распыления топлива в форсунке и улучшения проникновения мелких капель. В мире появилось много различных типов инжекторных механизмов. В формировании струи инжектора с подачей воздуха преобладает вспомогательный воздушный поток, поэтому следует понимать процесс диспергирования капель и их распыление, а также динамику капель.
Инструменты лазерной диагностики, такие как лазерный лист [55], эксиплекс [56] и LDV [14], могут предоставить информацию, касающуюся угла распыления, формы распыления, проникновения, области паров и т. Д., Но подробную информацию о распылении, такую как капля Распределение диаметра и его скорости в двумерной плоскости пока не получено.Техника визуализации может предоставить достаточную пространственную, но очень скудную временную информацию о характеристиках распыления. Фазовый доплеровский анемометр (КПК) может измерять диаметр капли и ее скорость с очень высоким пространственным и временным разрешением, но это метод измерения по одной точке. Для определения двумерного изображения аэрозоля с подробными характеристиками капель требуется альтернативный метод.
В этом разделе доказана полезность среднего диаметра по Заутеру (SMD) [57,58] в периодическом инжекторе, а также реализованы классы размеров капель, чтобы лучше понять передачу импульса между жидкой и газовой фазами.
Пневматическая форсунка, использованная в этом эксперименте, была коммерческой форсункой для двухтактного морского двигателя мощностью более 22 кВт (30 л.с.) на цилиндр, как показано на рисунке 13.21. Топливо сначала впрыскивается в полость, и воздушный инжектор приводится в действие путем открытия тарельчатого клапана. Соотношение воздух-топливо можно контролировать, изменяя период открытия клапана, когда разница давлений между воздухом и топливом установлена на определенном уровне. Перед клапаном форсунка имеет прямую трубку длиной 36 мм, в которой проводится предварительная атомизация.Топливо с пневмоприводом впрыскивается через тарельчатый клапан диаметром 5 мм.
Рис. 13.21. Инжектор с пневмоприводом.
(перепечатано с разрешения SAE)
В качестве топлива вместо бензина использовался сухой растворитель с показателем преломления 1,427. Удельная плотность сухого растворителя составляет 0,77 г / см 3 , что очень похоже на плотность бензина (0,7–0,8 г / см 3 ). Угол рассеяния 68 ° определялся углом преломления первого порядка [59]. Для векторных измерений использовался однокомпонентный LDV с изменением угла падения луча на ± 45 °.
Прямые фотографии впрыснутого спрея показаны [60] на рисунке 13.22. Понятно, что грибовидный вихрь вызывается напряжением сдвига на распылительной оболочке. Скорость распылительного наконечника, рассчитанная по этим изображениям, составляет около 64 м / с. Лист лазера YAG был использован для получения двумерного изображения аэрозоля, как показано на том же рисунке. Эти кадры представляют собой прямые снимки определенного цикла. Хорошо известно, что в этом типе инжектора с пневмоприводом бывают вариации от цикла к циклу. На рисунке также показаны два изображения в разных циклах в одно и то же время.Эти фотографии указывают на важность и необходимость анализа брызг с помощью двухмерного изображения с высоким временным разрешением, поскольку визуализация лазерного листа не может предоставить информацию об изменении во времени и информацию о диаметре. Одноточечные измерения не выявляют вариаций от цикла к циклу и вариаций пространственной структуры. Однако, используя одноточечное измерение с усредненными по ансамблю данными, можно продемонстрировать двухмерное изображение брызг с его пространственной структурой, как показано [61] на рисунке 13.23. Также показаны средний диаметр по Заутеру (SMD) и соответствующие векторы скорости.
Рис. 13.22. Изображения структуры впрыснутого спрея.
(перепечатано с разрешения SAE)
Рис. 13.23. Векторы скорости капель и SMD.
(перепечатано с разрешения SAE)
Пространственная дисперсия капель лучше всего объясняется с помощью плоских источников информации, таких как фотография или изображение лазерного листа. Метод КПК предоставляет одноточечную информацию, но метод усреднения по ансамблю с фазовой синхронизацией может продемонстрировать двумерное изображение, как показано на рисунке 13.23. Осесимметрия струи была проверена путем измерения в противоположных точках до r = –3 мм. На этом рисунке показано изменение SMD и его пространственная структура в зависимости от времени. Длина вектора была рассчитана как длина траектории капли в пределах 0,25 мс, а цвет представляет собой SMD. Максимальный размер SMD составлял 130 микрон.
Через 1,6 мс после сигнала впрыска, который использовался в качестве сигнала вспомогательного пневмопривода, на оси наблюдалась первая капля. Через 0,25 мс скорость распылительного наконечника достигла примерно 65 м / с, и наблюдалось рассеяние капель в радиальном направлении.Скорость распылительного наконечника 65 м / с была почти такой же, как и скорость, рассчитанная на основе изображения прямого распыления. Размер SMD на наконечнике распылителя составлял около 25 микрон. На центральной оси направление капель было параллельно оси, в то время как направление капель в области оболочки распылителя было более 45 градусов в радиальном направлении.
Через 2,3 мс скорость распылительного наконечника на оси увеличилась, и следующая капля из сопла образовала группу капель большего размера. Область, в которую проникают капли, напоминала зонтик.Маленькие и быстрые капли существовали до 2,8 мс. Через 2,8 мс скорость распылительного наконечника уменьшилась, а SMD увеличился вблизи центральной оси. Более крупные капли догоняли и сталкивались с более мелкими каплями, и, следовательно, диаметр начал увеличиваться. Капли брызг во внешней области имели более низкую скорость из-за сильных сдвиговых потоков, и тогда направление капель показывало волнистую структуру брызг. Очень большая капля красного цвета возле сопла образовалась за 2,875 мс, когда размер капли распылительного наконечника составлял 30 микрон.
Кроме того, капли брызг, находящиеся под влиянием турбулентного воздуха, имели тенденцию следовать за движением воздуха, но большие капли с высоким импульсом проникали в области с высокой турбулентностью потока, такие как области рециркуляционного потока. Тогда эту динамику капель нельзя было продемонстрировать только по среднему диаметру Заутера, но для этого требуются другие передовые методы, такие как анализ с классификацией по размеру.
Четыре вектора скорости капли, классифицированные по размеру, показаны замороженными на 2,875 мс на рисунке 13.24. Ясно, что в областях малых капель образуется грибовидный вихрь, вызванный сдвиговым потоком.На наконечнике распылителя мелкие капли демонстрируют больший градиент скорости, чем более крупные капли. Векторы капель большего размера имеют более прямые и более узкие углы впрыска. В области оболочки распылителя нет капель размером более 30 мкм мкм.
Рис. 13.24. Динамика капель по размеру при 2,875 мс.
(перепечатано с разрешения SAE)
Угол распыления для каждого размерного класса и затухание количества движения должны быть количественно определены для понимания процессов испарения и образования смеси.Профили движения воздуха и турбулентной энергоемкости показаны на рисунке 13.25. Большая область турбулентной энергии, показанная темной областью на рисунке, указывает на наличие области сильного сдвигового потока. В начале периода закачки большее пятно находится в центре оси. На следующем этапе в области оболочки распылителя появляется темная область. Вектор скорости скольжения показывает большой угол вектора в области сильного сдвига.
Рис. 13.25. Движение воздушного потока, турбулентная кинетическая энергия и скорость скольжения маленькой капли.
(перепечатано с разрешения SAE)
Характеристики распыления бензинового инжектора с пневмоприводом были исследованы с помощью фазовых доплеровских измерений. Краткое изложение вышеизложенных результатов следует.
Двумерное плоское изображение капель, классифицированных по размеру, использовалось для демонстрации пространственной структуры образования брызг. Было обнаружено, что средний диаметр по Заутеру не является лучшим представительным значением в области ускорения, и что метод классификации по размеру очень полезен для понимания подробных характеристик распыления.Скорость скольжения и относительное число Рейнольдса были реализованы, чтобы показать область передачи импульса из-за сильной силы сопротивления. Грибовидный вихрь образовался сильным сдвиговым потоком на распылительной оболочке и состоял из маленьких капель размером от 10 до 20 мкм мкм. Возле сопла была обнаружена структура с двойным распылительным наконечником, которая быстро уменьшалась с расстоянием. Капли размером более 30 мкм м проникли почти прямо вниз по течению. Было обнаружено, что эта анимация брызг может быть самым мощным инструментом в понимании процессов передачи импульса.
Что делает впрыск топлива?
Держим машину в дороге
В этой статье мы будем говорить
про это применительно к автомобильным двигателям и как. Чтобы двигатель работал
эффективно и плавно, необходимо обеспечить правильную смесь воздуха и топлива
и автоматически адаптируется к диапазону требований двигателя. Это может быть
карбюратором или системой впрыска топлива.
В то время как автомобиль отечественного производства обычно работает на карбюраторной системе.В этом сценарии есть поплавковая камера с резервуаром. С системой впрыска топлива топливная форсунка подает жидкое топливо во всасываемый воздух и зависит от подачи топлива непрерывно. Система впрыска топлива — это подача топлива в двигатель внутреннего сгорания с помощью инжектора. Мы используем впрыск топлива во всех дизельных двигателях, таких как 18-колесные и немецкие автомобили, иначе говоря, впрыск топлива — это по сути карбюратор.
Как работают системы впрыска топлива?
В системе впрыска топлива есть специальный насос,
подает топливо под давлением в двигатель из топливного бака.В
топливо находится под давлением и распределяется по каждому цилиндру индивидуально.
В зависимости от конкретной системы он подает топливо во впускной коллектор.
или входной порт с помощью инжектора.
Работает почти так же, как водяной шланг и форсунка, но с топливом вместо воды. Система впрыска топлива гарантирует, что топливо представляет собой мелкий туман, а не порыв топлива. Затем топливо и воздух смешиваются, когда воздух проходит через впускной коллектор, и затем смесь перемещается в камеру сгорания .
Нужен ли впрыск топлива?
Для двигателя, который спроектирован и
настроить на основе системы впрыска топлива, да, впрыск топлива необходим. Если
форсунки не работают должным образом, автомобиль не вращается, или
иногда вообще не запускается.
Поэтому рекомендуется частое обслуживание уполномоченным опытным механиком по системе впрыска топлива. Единственным исключением из этого правила является то, что автомобиль работает идеально без проблем, таких как резкий холостой ход, торможение, плохое ускорение или высокие уровни выбросов.Если он не сломан, не связывайтесь с ним! Тем не менее, вы должны следовать рекомендациям дилера и производителя для проверки опытным механиком или дилером.
Впрыск топлива лучше карбюраторного?
Для автолюбителей споры между впрыском топлива или карбюратором, что лучше, являются извечными спорами, как и споры о том, что было раньше, курица или яйцо. Есть автолюбители «старой школы», которые считают, что карбюраторный двигатель работает лучше, чем система впрыска топлива.Точно так же есть автолюбители, которые либо изменились со временем, либо родились в мире с системой впрыска топлива, чтобы полагать, что система впрыска топлива — лучший выбор.
В чем преимущество впрыска топлива?
Существует множество преимуществ системы впрыска топлива, некоторые из которых изменили образ мышления автолюбителей «старой школы», чтобы отдать должное системе впрыска топлива. Вот некоторые из этих преимуществ:
Меньше расход топлива
Топливо
система впрыска требует меньшего расхода топлива, чем
двигатель, который карбюраторный из-за «новой школы», известной как изощренность
электронная система, которая контролирует соотношение воздух / топливо и регулирует его
автоматически для поддержания оптимальных условий.
Превосходный запуск
Главное преимущество впрыска топлива
системы — это их способность запускаться легче независимо от погоды или
горячий.
Мощный
Поскольку впрыск топлива с управлением коробкой передач, двигатели с системой впрыска топлива обычно обеспечивают более высокую мощность и крутящий момент, чем карбюраторный двигатель, поскольку он может оптимизировать соотношение воздух-топливо и момент зажигания.
Повышенная надежность
Двигатели с системой впрыска топлива
существенно надежнее карбюраторного двигателя.Система впрыска топлива есть
менее подвержен обледенению и таким проблемам, как случайная остановка двигателя, смазка
пропитанные свечи зажигания, и это устраняет другие проблемы, характерные для карбюраторных
двигатели.
Каковы признаки неисправной топливной форсунки?
Ниже приведены индикаторы, которые мы
должен иметь автомобиль с топливом
система впрыска проверена опытным механиком:
- Проблемы с запуском
- Неровные холостые обороты
- Тесты на выбросы не пройдены
- Плохие характеристики на дороге
- Двигатель не достигает полных оборотов в минуту
- Используется больше топлива, чем обычно
- Бакены и скачки при различных нагрузках на дроссельную заслонку
- Выхлопная труба выходит дым, создающий загрязнение
- Стучит в двигателе
Независимо от того, предпочитает ли автолюбитель карбюраторная система или система впрыска топлива, система впрыска топлива захватила мир автомобилестроения.Только передний привод заменил задний привод, который автолюбители «старой школы» предпочитают задний, потому что у автомобиля больше мощности «вставай и езжай».
В мире автогонок, где раньше не было ничего, кроме карбюраторной системы и заднего привода на трассе, новые автомобили постепенно проникли в систему. Хотя кузов автомобиля может выглядеть одинаково, то, что находится под капотом и под задней частью, определенно изменилось. По вопросам ремонта топливной форсунки в Атаскадеро, Калифорния, звоните сегодня по телефону (805) 466-3236.
Как работают системы впрыска топлива
Алгоритмы управления двигателем довольно сложны. Программное обеспечение должно позволять автомобилю соответствовать требованиям по выбросам на 100 000 миль, соответствовать требованиям EPA по экономии топлива и защищать двигатели от неправильного использования. И есть множество других требований, которым нужно соответствовать.
Блок управления двигателем использует формулу и большое количество справочных таблиц для определения ширины импульса для заданных условий эксплуатации. Уравнение будет представлять собой серию множества множителей, умноженных друг на друга.Многие из этих факторов будут взяты из справочных таблиц. Мы рассмотрим упрощенный расчет ширины импульса топливной форсунки . В этом примере в нашем уравнении будет только три фактора, тогда как в реальной системе управления их может быть сто или больше.
Ширина импульса = (основная ширина импульса) x (коэффициент A) x (коэффициент B)
Для вычисления ширины импульса ЭБУ сначала ищет базовую ширину импульса в справочной таблице. Базовая ширина импульса является функцией оборотов двигателя (об / мин) и нагрузки (которая может быть рассчитана по абсолютному давлению в коллекторе).Допустим, частота вращения двигателя составляет 2000 об / мин, а нагрузка равна 4. Мы находим число на пересечении 2000 и 4, что составляет 8 миллисекунд.
об / мин | Нагрузка | ||||
1 | 2 | 3 | 4 | ||
9045 4 | 9045 1 | 2 | 3 | 4 | 5 |
2,000 | 2 | 4 | 6 | 8 | 10 |
3,000 | 3 | 6 | 9 | 12 | 15 |
4,000 | 4 | 8 | 12 | 16 | 20 |
В следующих примерах A и B — это параметры, поступающие от датчиков.Допустим, A — это температура охлаждающей жидкости, а B — уровень кислорода. Если температура охлаждающей жидкости равна 100, а уровень кислорода равен 3, справочные таблицы говорят нам, что коэффициент A = 0,8 и коэффициент B = 1,0.
A | Фактор A | B | Фактор B | |
0 | 1,2 | 0 | 1.0 | |
25 | 1,1 | 1 | 1,0 | |
50 | 1,0 | 2 | 1,0 | |
75 | 0,9 | 3 | 1,0 | |
100 | 0,8 | 4 | 0.75 |
Итак, поскольку мы знаем, что ширина основного импульса является функцией нагрузки и числа оборотов в минуту, и что ширина импульса = (ширина основного импульса) x (коэффициент A) x (коэффициент B) , общая ширина импульса в нашем примере равна:
8 x 0,8 x 1,0 = 6,4 миллисекунды
Из этого примера вы можете увидеть, как система управления выполняет настройки. Если параметр B представляет собой уровень кислорода в выхлопе, справочная таблица для B — это точка, в которой (по мнению разработчиков двигателей) слишком много кислорода в выхлопе; и, соответственно, ЭБУ сокращает расход топлива.
Реальные системы управления могут иметь более 100 параметров, каждый со своей таблицей поиска. Некоторые параметры даже меняются со временем, чтобы компенсировать изменения в характеристиках компонентов двигателя, таких как каталитический нейтрализатор. И, в зависимости от частоты вращения двигателя, ЭБУ, возможно, придется выполнять эти вычисления более ста раз в секунду.
Чипы производительности
Это подводит нас к обсуждению чипов производительности. Теперь, когда мы немного понимаем, как работают алгоритмы управления в ЭБУ, мы можем понять, что делают производители микросхем производительности, чтобы получить больше мощности от двигателя.
Чипы Performance производятся компаниями вторичного рынка и используются для увеличения мощности двигателя. В ЭБУ есть микросхема, которая содержит все таблицы поиска; чип производительности заменяет этот чип. Таблицы в микросхеме производительности будут содержать значения, которые приводят к увеличению расхода топлива в определенных условиях движения. Например, они могут подавать больше топлива при полностью открытой дроссельной заслонке на каждой скорости двигателя. Они также могут изменить время зажигания (для этого тоже есть справочные таблицы). Поскольку производители чипов производительности не так озабочены такими проблемами, как надежность, пробег и контроль выбросов, как производители автомобилей, они используют более агрессивные настройки в топливных картах своих чипов производительности.