Устройство форсунки дизельного двигателя: Форсунка дизельная — устройство и разновидности

Содержание

Форсунка дизельная — устройство и разновидности

Дизельная форсунка, которую нередко называют инжектором, является ключевой деталью дизельного двигателя. Ее основной задачей выступает подача топлива в камеру сгорания, а также его точная дозировка и распыление. Учитывая сложные условия эксплуатации, которые сопровождают эксплуатацию дизельного двигателя и выражаются в высокой температуре и серьезном давлении, от качества изготовления и эффективности выполнения форсункой своих функций зависит КПД всего агрегата.

Наличие в конструкции топливной форсунки выступает отличительной чертой не только дизельных, но и бензиновых инжекторных двигателей. Необходимость в этой детали возникает из принципа работы обоих типов силовых установок, который предусматривает использование системы прямого впрыска горючего в камеры сжигания. При этом воспламенение топлива происходит под воздействием высокого давления, достигаемого за счет ТНВД. Уровень этого показателя в дизельных агрегатах намного выше, чем в инжекторных бензиновых установках.

Как следствие, эффективная работа двигателя на дизельном топливе возможна только при наличии специальной детали, способной обеспечить своевременную подачу нужного количества горючего, его распыление внутри камеры и герметичность си

темы. Основные функции дизельной форсунки уже были перечислены выше. Они состоят в следующем:

· дозировка горючего, представляющая собой определение такого его количества, которое необходимо для достижения нужной мощности;

· распыление топлива внутри камеры сгорания, что обеспечивает более полное и эффективное сжигание;

· сохранение герметичности системы подачи топлива.

История изобретения и совершенствования

Первые модели дизельного двигателя, разработанные и изготовленные в конце позапрошлого века при непосредственном участии Рудольфа Дизеля, предусматривали наличие так называемой компрессорной форсунки и применение в качестве топлива керосина. Появление ТНВД позволило использовать намного более компактные и удобные бескомпрессорные форсунки.

Особенно удачной оказалась модель инжектора, созданная в 20-х годах прошлого века Робертом Бошем. Этот вариант дизельной форсунки с незначительными доработками и усовершенствованиями применяется до настоящего времени. Конечно же, эксплуатационные и технические параметры современных деталей, несмотря на общую схожесть конструкции, существенно превосходят разработки Боша, что объясняется значительным улучшением качества и точности изготовления, а также использованием в процессе производства новейших сталей и сплавов.

Ключевым усовершенствованием форсунки стало активное применение разнообразной электроники. Использование датчиков контроля и управления работой дизельного двигателя в целом и его отдельных узлов позволяет заметно повысить КПД и эффективность эксплуатации транспортного средства.

Устройство

В настоящее время продолжает активно использовать большое количество различных по конструкции и принципу действия типов дизельных форсунок. Несмотря на определенные особенности каждого из них, можно выделить несколько общих элементов или деталей, в том или ином виде присутствующих практически всегда. К ним относятся:

· корпус, в котором размещаются остальные детали и элементы дизельной форсунки;

· распылитель в виде иглы. Предназначение детали очевидно и заключается в распределении топлива в пространстве над поршнем;

· стержень или плунжер, который движется внутри корпуса форсунки, за счет чего нагнетается необходимый уровень давления;

· пружина запирания иглы. Используется для фиксации иглы в нужном положении;

· штуцер подвода топлива. Предназначен для подачи горючего в форсунку;

· управляющий клапан. Применяется для эффективного решения двух главных задач – дозировки топлива и определения регулярности его впрыскивания в камеру сжигания;

· фильтр очистки топлива. Один из элементов общей системы очистки используемого в дизельном двигателе горючего;

· штуцер обратного отвода излишков топлива. Назначение этого элемента форсунки также предельно очевидно – он применяется для того, чтобы отвести из форсунки топливо, не попавшее в камеру сжигания.

Устройство современных дизельных форсунок предусматривает обязательное наличие электронного блока управления. Входящие в него приборы и датчики в автоматическом режиме регулируют процессы, протекающие в рассматриваемом механизме, обеспечивая эффективную работу как инжектора, так и двигателя в целом.

Рабочие стадии

Эксплуатация дизельной форсунки предусматривает циклическое и последовательное повторение 4 рабочих стадий. В указанное число входят:

1. Закрытое положение форсунки. Начальный этап процесса. Предусматривает создание высокого давления одновременно со стороны плунжера и пружины, благодаря чему форсунка остается закрытой.

2. Начало впрыска. Автоматика подает сигнал, вследствие которого плунжер форсунки начинает двигаться вверх. В результате давление на иглу уменьшается, она также начинает подниматься, обеспечивая начало поступления топлива в камеру сгорания.

3. Полностью открытое положение форсунки. На этом этапе плунжер управления поднимается максимально, достигая верхнего упора. Это означает аналогичное перемещение иглы и режим полного открытия форсунки.

4. Конец впрыска. Завершающая стадия рабочего процесса. Она состоит в опускании управляющего плунжера и иглы форсунки, следствием чего становится перекрытие доступа горючего в камеру сжигания.

Приведенная выше схема с некоторыми корректировками достаточно точно описывает эксплуатацию дизельных форсунок любого типа. Важно понимать, что количество подобных рабочих циклов в период времени зависит от типа и мощности агрегата, вида самой форсунки и большого количества других факторов.

Разновидности и принцип работы

В сегодняшних условиях применяются самые разные виды дизельных форсунок. Их большое разнообразие объясняется как крайне широкой сферой применения, так и различиями в задачах, для решения которых они предназначаются.

Механическая форсунка

Традиционный вариант устройства, постепенно уступающий по популярности современным инженерным решениям. Именно его принцип действия был приведен выше при описании рабочего цикла дизельной форсунки. Он базируется на срабатывании клапана при достижении определенного уровня давления.

Механическая форсунка применяется в автомобилестроении в течение нескольких десятков лет. Однако, введение новых экологических стандартов и всеобщее стремление к повышению уровня экономичности дизельных двигателей привело к неуклонному вытеснению этого классического устройства более эффективным разработкам последних лет.

Главное направление совершенствования форсунки в частности и дизельного двигателя в целом – это передача контроля и управления большинством рабочих процессов электронным приборам и датчикам. Кроме того, отдельного упоминания заслуживает форсунка с двумя пружинами, разделяющая подъем иглы на две стадии. В результате обеспечивается гибкость в подаче горючего, более полное сгорание топлива и уменьшение шума при работе агрегата.

Электромеханическая форсунка

Главное отличие от механического варианта состоит в использовании для перемещения иглы форсунки вместо пружины электромагнитного клапана. Он управляется автоматикой, благодаря чему достигается точное определение количества необходимого топлива и оптимальная периодичность его впрыска.

Электромеханическая форсунка напоминает часто используемую в инжекторных бензиновых двигателях электромагнитную версию устройства. Она не используется в дизель-моторах, так как не способна выдерживать высокое давление.

Насос-форсунка

Еще одна вариация традиционного дизельного двигателя. Устройство агрегата не предполагает наличие обычного ТНВД. Вместо него для нагнетания необходимого уровня давления используются специальные насос-форсунки. Фактически, вместо одного топливного насоса высокого давления устанавливаются несколько более простых, каждый из которых обслуживает только одну форсунку.

Такое устройство двигателя позволяет подавать топливо в камеру сгорания под очень высоким давлением. Как следствие – обеспечивается уверенное самовоспламенение и более полное сжигание горючего. Отсутствие ТНВД позволяет сделать двигатель более компактным, что также выступает немаловажным достоинством.

Однако, использование системы насос-форсунка имеет и определенные недостатки. Главные из них – высокая требовательность к качеству применяемого дизельного топлива, а также более значительные расходы на изготовление двигателя в целом. Именно поэтому стремительно растет популярность еще одной разновидности дизельных форсунок и системы, предусматривающей их применение.

Пьезоэлектрическая форсунка

Устройство пьезофорсунки напоминает электромеханические или электромагнитные аналоги. Главное отличие заключается в использовании вместо электромагнитного клапана специального пьезоэлемента, часто называемого пьезоэлектрическим кристаллом. Его наличие обеспечивает крайне высокое быстродействие устройства. Благодаря этому клапан срабатывает в 4 раза чаще, чем в обычных электромагнитных форсунках.

Нет ничего удивительного, что пьезоэлектрические форсунки стали важным элементом системы впрыска Common Rail, которая используется сегодня практически повсеместно. Ее использование позволяет увеличить эффективность работы дизельного двигателя и повысить КПД при одновременном уменьшении расхода топлива и количества вредных выбросов.

Причины и способы устранения неисправностей

Главной проблемой при эксплуатации форсунок выступает низкое качество дизельного топлива. Оно может быть вызвано с продажей некачественного горючего на автозаправочных станциях, использованием различных красителей и присадок для дизтоплива, слишком большим количеством тяжелых фракций углеводородов или элементарным загрязнением топлива мелкими частицами различных веществ.

В любом из перечисленных случаев возникают крайне неприятные последствия в виде повышенного уровня износа и быстрой эрозии поверхности деталей и узлов дизельной форсунки. Следствием этого становятся очевидные проблемы в работе двигателя в целом, которые обычно выражаются в следующем:

· ослабление или перепады мощности в процессе эксплуатации автомобиля;

· трудности при запуске двигателя;

· порывистое движение при увеличении оборотов;

· заметный рост расхода дизельного топлива;

· увеличение количества выбросов или их качества (черный или сизый дым из выхлопной трубы) и т. д.

Современное диагностическое оборудование позволяет заблаговременно выявить возможные проблемы с форсунками двигателя. Поэтому для длительной и бесперебойной работы агрегата целесообразно регулярно проходить техническое обслуживание, причем в солидной специализированной организации.

Для устранения выявленных проблем применяются различные современные и весьма эффективные методы, требующие наличия соответствующего оборудования и навыков и обслуживающих его специалистов:

· чистка ультразвуком;

· промывка при помощи специальных присадок, добавляемых в дизельное топливо;

· промывка специальными техническими жидкостями на стенде;

· ручная промывка форсунок дизельного двигателя.

Своевременно проведенная диагностика и ремонт форсунок обеспечат длительную и беспроблемную эксплуатацию. В свою очередь, это гарантирует владельцу транспортного средства эффективную и экономную работу всего дизельного двигателя, установленного на автомобиле.

Устройство форсунки дизельного двигателя

Дизельная форсунка представляет собой один из главных элементов системы питания дизельного двигателя. Форсунка (инжектор) обеспечивает прямую подачу солярки в камеру сгорания дизеля, а также дозирование подаваемого топлива с высокой частотой (более 2 тыс. импульсов в минуту). Инжектор осуществляет эффективный распыл горючего в пространстве над поршнем. Топливо в результате такого распыла получает форму факела. Форсунки отличных друг от друга систем топливоподачи имеют конструктивные особенности, различаются по способу управления. Инжекторы делят на две группы:

  • механические;
  • электромеханические;

Содержание статьи

Принцип работы механической форсунки

Принцип работы системы питания дизеля с механическим управлением форсунки состоит в следующем. К топливному насосу высокого давления (ТНВД) подается горючее из топливного бака. За подачу отвечает подкачивающий насос, который создает низкое давление, необходимое для прокачки солярки по топливопроводам.

Далее ТНВД в нужной последовательности осуществляет распределение и нагнетание горючего под высоким давлением в магистрали, ведущие к механической форсунке. Каждая форсунка данного типа открывается для очередного впрыска порции солярки в цилиндры под воздействием высокого давления топлива. Снижение давления приводит к закрытию дизельной топливной форсунки.

Простой механический инжектор имеет корпус, распылитель, иглу и одну пружину. В устройстве запорная игла свободно движется по направляющему каналу распылителя. Сопло форсунки плотно перекрывается в тот момент, когда нет нужного давления от ТНВД. Внизу игла опирается на уплотнение распылителя, имеющее коническую форму. Прижим иглы реализован посредством закрепленной сверху пружины.

Распылитель является одной из важнейших составных деталей среди других элементов в устройстве инжекторной форсунки. Распылители могут иметь разное количество распылительных отверстий, отличаться способом регулировки подачи топлива.

Простые дизельные моторы, которые имеют разделенную камеру сгорания, зачастую получают распылитель с одним отверстием и иглой. Дизельные моторы, которые устроены на основе непосредственного впрыска топлива, оборудованы форсунками с несколькими распылительными отверстиями. Число отверстий в таком распылителе колеблется от двух до шести.

Подача топлива регулируется зависимо от конструкции распылителя, так как существуют два основных типа подобных решений:

  • распылитель с возможностью перекрытия каналов;
  • распылитель с перекрываемым объемом;

В первом случае игла форсунки перекрывает подачу горючего путем перекрытия каждого отверстия. Второй тип форсунок означает, что игла перекрывает своеобразную камеру в нижней части распылителя.

Давление топлива, нагнетаемого ТНВД, заставляет иглу подниматься благодаря наличию на поверхности такой иглы специальной ступеньки. Солярка проникает в корпус под указанной ступенькой. В момент, когда давление горючего сильнее усилия, которое создает прижимная пружина, игла движется вверх. Таким образом открывается канал распылителя. Дизтопливо под давлением проходит через распылитель и происходит его распыл в форме факела. Так реализован впрыск топлива.

Далее определенное количество горючего, которое подается насосом высокого давления, пройдет через распылитель и попадет в камеру сгорания. После этого давление на ступеньке иглы начинает снижаться, в результате чего игла от усилия пружины возвращается в исходное положение и плотно перекрывает канал. Тогда подача солярки в распылитель полностью прекращается.

Инжектор с двумя пружинами

На эффективность топливоподачи и последующего сгорания топлива в цилиндрах дизеля можно влиять, изменяя различные характеристики форсунки, такие как структура и количество каналов распылителя, усилие пружины и т.п. Одним из конструкторских решений стало внедрение в устройство форсунок специального датчика подъема иглы. Данный подъем учитывается специальными электронными блоками управления, которые взаимодействуют с ТНВД.

Еще одним витком развития стали дизельные форсунки с двумя пружинами. Устройство таких форсунок сложнее, но результатом становится большая гибкость в процессе подачи топлива. Сгорание рабочей смеси становится более мягким, дизель тише работает. 

Особенностью работы указанных инжекторов является двухступенчатый подъем иглы. Получается, нагнетаемое ТНВД топливо сначала превышает по силе давления силу сопротивления одной пружины, а затем другой. В режиме холостого хода и при небольших нагрузках на мотор впрыск осуществляется только посредством первой ступени, подавая в двигатель незначительное количество солярки. Когда мотор выходит на режим нагрузки, давление нагнетаемого ТНВД топлива растет, горючее подается уже двумя дозированными порциями. Первый впрыск небольшого объема (1/5 от общего количества), а далее основной (около 80% солярки). Разница давлений впрыска для открытия первой и второй ступени не особенно большая, что обеспечивает плавность топливоподачи.

Такой подход позволил повысить равномерность, эффективность и полноценность сгорания смеси. Дизельный двигатель стал расходовать меньше горючего, снизилось количество токсичных примесей в выхлопных газах. Дизельные форсунки с двумя пружинами активно использовались на агрегатах с непосредственным впрыском топлива до момента появления систем питания под названием Commоn Rail.

Электромеханическая дизельная форсунка

Дальнейшее развитие систем топливоподачи дизельного ДВС привело к появлению форсунок, в которых солярка подается в цилиндры посредством электромеханических форсунок. В таких инжекторах игла форсунки открывает и закрывает доступ к распылителю не под воздействием давления топлива и противодействия силе пружины, а при помощи специального управляемого электромагнитного клапана. Клапан контролируется ЭБУ двигателя, без соответствующего сигнала которого горючее не попадет в распылитель.

Блок управления отвечает за  момент начала топливного впрыска и длительность подачи топлива. Получается, ЭБУ дозирует солярку для дизеля путем подачи на клапан форсунки определенного количества импульсов. Параметры импульсов напрямую зависят от того, с какой частотой вращается коленчатый вал двигателя, в каком режиме работает дизельный мотор, какая температура ДВС и т.д.

В системе питания Common Rail электромеханическая форсунка может за один цикл реализовать подачу топлива посредством нескольких раздельных импульсов (впрысков). Топливный впрыск за цикл осуществляется до 7 раз. Давление впрыска также значительно повысилось сравнительно с предыдущими системами.

Благодаря дозированной высокоточной подаче давление газов на поршень в результате сгорания смеси растет плавно, сама топливно-воздушная смесь равномернее распределяется по цилиндрам дизеля, лучше распыляется и полноценно сгорает.

Дальнейшее видео наглядно иллюстрирует принцип работы электромеханической форсунки на примере бензинового двигателя. Главное отличие заключается в том, что давление топлива в дизельной форсунке значительно выше. 

Указанный подход позволил окончательно переложить задачу по управлению впрыском с форсунок и ТНВД на электронный блок. Электронный впрыск работает намного точнее, дизель с подобными решениями стал еще более мощным, экономичным и экологичным. Разработчикам удалось значительно снизить вибрации и шумы в процессе работы дизельного агрегата, повысить общий ресурс ДВС.

Насос-форсунка

Одной из разновидностей систем питания дизеля являются конструкции, в которых полностью отсутствует ТНВД. За создание высокого давления впрыска отвечают так называемые дизельные насос-форсунки. Принцип работы системы состоит в том, что насос низкого давления сначала подает солярку напрямую к инжектору, в котором уже имеется собственная плунжерная пара для создания высокого давления впрыска. Плунжерная пара форсунки работает от прямого воздействия на нее кулачков распредвала. Данная система позволяет добиться лучшего качества распыла дизтоплива благодаря способности создать очень высокое давление впрыска. 

Исключение из системы подачи топлива ТНВД позволяет сделать размещение дизельного ДВС под капотом более компактным, избавиться от привода топливного насоса и отбора мощности на его постоянное вращение. Также стало возможным удалить из системы питания решения, которые распределяют топливо от ТНВД по цилиндрам.  Инжекторы в системе с насос-форсунками имеют электрический клапан, что позволяет подавать топливо за два импульса.

Принцип похож на работу механической форсунки с двумя пружинами. Решение позволяет реализовать сначала подвпрыск, а уже затем произвести подачу в цилиндр основной порции горючего. Насос-форсунки реализуют подачу топлива в максимально точно заданный момент начала впрыска, лучше дозируют солярку. Дизельный мотор с такой системой экономичен, работает мягко и тихо, содержание вредных веществ в отработавших газах сведено к минимуму.

Главным минусом решения можно считать то, что давление впрыска насос-форсунки напрямую зависит от частоты вращения коленвала двигателя. В списке недостатков также отмечены: сложность исполнения, высокая требовательность к моторному маслу, чистоте и качеству топлива. В процессе эксплуатации выделяют трудности в процессе ремонта и обслуживания, а также общую дороговизну сравнительно с системами, которые оборудованы привычным ТНВД.

Читайте также

Форсунка дизельного двигателя.

Устройства и приборы высокого давления



Форсунки дизельного двигателя

Назначение форсунок и требования к ним

Форсунка служит для подачи топлива в цилиндр двигателя, распыления и распределения топлива по камерам сгорания.

Условия работы форсунок очень тяжелые – они подвержены воздействию колоссальных давлений и тепловых нагрузок.
Впрыск начинается при температуре в камере сгорания 700…900 ˚С и давлении 3…6 МПа, а заканчивается при температуре до 2000 ˚С и давлении 10…11 МПа.

К форсункам предъявляются следующие очень жесткие требования:

  • оптимальная дисперсность, т. е. высокая степень дробления капель топлива, так как чем меньше капли, тем больше их суммарная поверхность, быстрее происходит нагрев и сгорание топлива, но при этом уменьшается длина факела;
  • обеспечение такой скорости струи топлива, чтобы оно достигало краев камеры сгорания, поэтому капли не должны быть слишком мелкими – средний размер капель (с учетом требования по первому пункту) – 30…50 мкм;
  • распределение впрыскиваемого топлива по всему объему камеры сгорания;
  • резкое начало впрыска и его прекращение.

Форсунки бывают открытые и закрытые.

Открытые форсунки обеспечивают постоянную подачу топлива. В современных дизелях такие форсунки не применяются.

В дизельных двигателях применяют закрытые форсунки, которые открываются только в момент подачи топлива в камеру сгорания.

Закрытые форсунки могут быть двух типов – одно- и многодырчатые. Первые устанавливают на двигателях с вихревыми камерами сгорания, вторые с неразделенными камерами сгорания.

Различают, также, механические форсунки и форсунки, управляемые электроникой.

Современные системы питания дизельных двигателей используют впрыск, управляемый компьютером (электронным блоком управления). На основании информации, поступающей от многочисленных датчиков, такие системы учитывают многие процессы и текущие параметры работы двигателя. Форсунки в таких системах управляются специальными электромагнитными или пьезоэлектрическими устройствами, что открывает широкие возможности повышения эффективности работы двигателя, а также его экологичности.

К отдельной категории устройств для впрыска топлива в цилиндры относятся насос-форсунки, представляющие собой своеобразный гибрид между ТНВД и форсункой в одном узле.

***

История изобретения форсунки

Как известно, Рудольф Дизель изначально планировал работу своего знаменитого детища на угольной пыли. Его система питания содержала специальный насос, вдувавший угольную пыль в цилиндр двигателя сжатым воздухом. Однако, уголь оказался низкокалорийным топливом, не способным дать высокой температуры сгорания, и Дизелю пришлось обратить свой гениальный взор к жидким топливам. Ведь разница температур в цикле работы двигателя – прямой путь к повышению КПД, как установил француз Николя Сади Карно.

Сначала Дизель попробовал впрыскивать в цилиндр своего двигателя бензин, но при первом же испытании двигателя произошел взрыв, едва не стоивший жизни самого Дизеля и его помощников, и изобретателю пришлось применить менее взрывоопасное топливо – керосин.

В июне 1894 года Дизель построил двигатель, использующий в качестве топлива керосин, который впрыскивался в цилиндры специальной форсункой. Для впрыскивания керосина применялся пневматический компрессор, развивавший давление, превышающее давление в цилиндре двигателя. За такими двигателями закрепилось название «компрессорные дизели».

Идея гидравлического впрыска топлива в дизельных двигателях принадлежит, как утверждает история, французскому инженеру Сабатэ, который, к тому же, предложил многократный впрыск, т. е. впрыск, осуществляемый в несколько этапов (эта идея используется в современных системах питания — Common Rail и насос-форсунка).

В 1899 году русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой. Эти форсунки устанавливались на дизелях, выпускавшихся Механическим заводом «Людвиг Нобель» в Петербурге в начале прошлого века («русские дизели»).

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, а также создал удачную модификацию бескомпрессорной форсунки. Эти устройства с различными усовершенствованиями используются в системах питания дизельных двигателей и в наши дни.

Дизельные двигатели, использующие в системе питания повышение давления топлива перед впрыском, называют «бескомпрессорными дизелями».

В настоящее время классические компрессорные дизели не имеют практического применения. В современных двигателях впрыск осуществляется бескомпрессорными способами.

Однако, наука и техника не стоят на месте, и, благодаря широкой компьютеризации всех систем автомобиля, в настоящее время механические форсунки постепенно вытесняются более совершенными устройствами, управляемыми электроникой.

***

Принцип действия многодырчатой форсунки

В многодырчатой форсунке основной частью является распылитель. Он состоит из корпуса 1 (рис. 1, а) и иглы 2. Распылитель притянут к корпусу 7 форсунки накидной гайкой 3. Сверху на иглу давит пружина 12 (рис. 1, б). Топливо в полость Б форсунки подается по каналу В.

Когда нет подачи топлива насосом (рис. 1. I), давление в полости Б составляет 2…4 МПа. Топливо давит на нагрузочный поясок Г иглы, но эта сила меньше силы пружины, которая прижимает иглу к распылителю. Игла запорным конусом Д перекрывает выходные отверстия – сопло А.

При подаче топлива насосом сила давления топлива на поясок Г становится больше силы пружины, игла поднимается, и через сопло А с большой скоростью топливо впрыскивается в камеру сгорания. После окончания подачи топлива давление падает, пружина возвращает иглу на место, запирая выходные отверстия распылителя, и впрыск прекращается.

Подъем иглы ограничен упором ее верхних заплечиков в корпус 5 форсунки и составляет 0,2…0,25 мм.

Качество дробления топлива зависит от скорости его движения через сопла, которая, в свою очередь, зависит от давления впрыска. При нормальном режиме скорость струи топлива составляет 200…400 м/с. Для этого необходимо создать перепад давлений в форсунке и камере сгорания 5…10 МПа. Поскольку давление в цилиндре в момент впрыска достигает 3…5 МПа, давление топлива в форсунке должно быть более 10…20 МПа.

Чтобы обеспечить работу форсунки при таком давлении, корпус распылителя и игла выполнены очень точно и притерты друг к другу. Они являются третьей прецизионной парой в магистрали высокого давления. Игла и корпус распылителя не подлежат разукомплектованию и подлежат замене только в комплекте.



Устройство многодырчатой форсунки

На двигателях с неразделенными камерами сгорания устанавливают, как правило, многодырчатые форсунки. Так, на двигателях КамАЗ-740 устанавливается форсунки серии 33, на двигателях ЗИЛ-645 и ЯМЗ-240 – форсунки Б-2СБ, на двигателях ЯМЗ-238 – форсунки модели 80 (см. рисунок 2 внизу страницы).

К корпусу 7 форсунки накидной гайкой 3 притянут распылитель с иглой 2. Распылитель имеет четыре сопловых отверстия диаметром 0,3 мм. На иглу через штангу 13 давит пружина 12. Топливо от насоса подается в полость форсунки через штуцер 9, в котором установлен фильтр 10. Верхнее отверстие в корпусе служит для отвода в бак топлива, просочившегося через зазоры между иглой и распылителем. Штифты 4 и 6 определяют точное положение распылителя относительно корпуса и топливных каналов. Прокладками 11 регулируют натяжение пружины, которое определяет давление начала впрыска.

Форсунки устанавливают в специальные гнезда головки цилиндра и закрепляют скобами.

Между корпусом форсунки и головкой блока размещается уплотнительная медная шайба (кольцо), которая надевается на корпус распылителя и вместе с форсункой аккуратно вставляется в гнездо головки. Такая шайба служит не только уплотнителем между форсункой и головкой, но и обеспечивает хороший теплоотвод от распылителя к головке цилиндров.

Уплотнительное кольцо 8 предохраняет полость клапанной крышки от попадания в нее пыли и влаги.

***

Устройство однодырчатой штифтовой форсунки

Однодырчатые форсунки иногда называют штифтовыми, поскольку конец ее иглы выполняется в виде штифта. Такие форсунки устанавливают, как правило, в дизелях с разделенными камерами сгорания.

Конструкция распылителя таких форсунок обеспечивает объемно-пленочное смесеобразование, поскольку распыливание топлива более направленное, чем в многодырочных форсунках, и значительная часть топлива достигает стенок камер сгорания, образуя быстро испаряющуюся пленку.

Дизели с вихревыми (раздельными) камерами сгорания менее чувствительны к составу топлива и устойчивее работают в широком диапазоне частот вращения. Применяемые с ними форсунки рассчитаны на меньшее давление, следовательно, не требуют столь высокой точности изготовления, как форсунки для неразделенными камерами сгорания, а потому дешевле.

На рис. 1,в показан распылитель штифтовой однодырчатой форсунки. Такая форсунка устанавливается в вихревых камерах сгорания и имеет одно сопло.

Конец иглы 2 выполнен в виде штифта 13 конусной формы, выступающего за пределы корпуса распылителя. Штифт служит для формирования факела топлива в виде конуса.

Принцип работы однодырчатых форсунок не отличается от принципа работы многодырчатых форсунок.

Устройство некоторых типов форсунок, применяемых на автотракторных дизельных двигателях отечественного производства приведено на рисунке 2.

***

Трубопроводы высокого давления дизеля



Главная страница
Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Форсунки для дизельных двигателей – ухаживаем за ними правильно!

Форсунки для дизельных двигателей – это детали топливной аппаратуры, которые наиболее подвержены износу. Считаются самыми простыми в обслуживании и проведении диагностики в условиях сервисных центров. От того, насколько эффективно работают форсунки, зависит качество сгорания топлива в цилиндрах двигателя, его запуск, динамика разгона автомобиля, экономичность и количество вредных выбросов.

Форсунки для дизельных двигателей – что это?

В зависимости от типа распылителей и топливной системы максимальное давление форсунок дизельных двигателей в распылителе в момент впрыска составляет порядка 200 МПа, а время – от 1 до 2 миллисекунд. От качества впрыска зависит уровень шума двигателя, количество выбросов в атмосферу сажи, окислов азота и углеводорода.

Современные модели различаются по форме корпуса, размеру распылителей, а также по способу управления. Отличие различных типов форсунок состоит в использовании различных систем впрыска и видов распылителей, которые бывают штифтовыми и дырчатыми. Штифтовые применяют в двигателях с форкамерной системой зажигания, дырчатые устанавливаются на дизелях с непосредственным впрыском топлива.

По способу управления детали делятся на однопружинные, двухпружинные, с датчиками контроля положения иглы и управляемые пьезоэлектрическими элементами. Кроме всего прочего, схема форсунки дизельного двигателя зависит от способа ее монтажа в головке цилиндров: при помощи фланца, хомута или путем вворачивания в гнездо.

Принцип работы форсунки дизельного двигателя – кратко о сложном

Основное назначение таких деталей заключается в дозировании и распылении топлива, а также герметичной изоляции камеры сгорания. В результате исследований были разработаны насосы-форсунки, которые устанавливаются в каждый цилиндр по отдельности. Принцип работы форсунки дизельного двигателя нового типа заключается в том, что она функционирует от кулачка распределительного вала через толкатель. Подача и слив топлива осуществляется через специальные каналы в головке блока. Дозирование топлива происходит через блок управления, который подает сигналы на запорные электромагнитные клапаны.

Работает насос-форсунка в импульсном режиме, что позволяет перед основным впрыском произвести предварительную подачу топлива. В результате чего значительно смягчается работа двигателя и снижается уровень токсичных выбросов.

Топливные форсунки в большинстве случаев нуждаются в простом уходе, чаще всего, для того чтобы вернуть их в рабочее состояние, достаточно просто их очистить и промыть. Независимо от того, сколько форсунок в двигателе, случается, что при резком нажатии на педаль газа ощущаются рывки и провалы или ощутимо снижается мощность, мотор начинает неустойчиво работать на низких оборотах, значит, произошла закупорка каналов форсунки твердыми смолянистыми отложениями. Что же делать?

Промывка форсунок дизельного двигателя – способы реализации

Загрязнение этого элемента ведет к нарушению распыления топлива и приводит к неправильному образованию воздушно-топливной смеси. В идеале пульверизация должна быть максимально равномерной. Основной источник загрязнения – содержащиеся в топливе смолы. Промывка форсунок дизельного двигателя может устранить все нарушения подачи топлива в цилиндры.

Процесс очистки форсунок предусматривает удаление различных загрязнений в топливных каналах. В настоящее время применяется несколько способов:

  • чистка форсунок дизельных двигателей с помощью ультразвука;
  • промывка форсунок топливом с добавлением специальных присадок;
  • промывка с использованием специальных жидкостей на стендах;
  • промывка вручную.

Для автомобилистов наиболее приемлемым является последний вариант, поскольку он позволяет проводить работы по очистке форсунок в домашних условиях. Однако в запущенных случаях приходится обращаться к услугам автоцентров, где проводится очистка при помощи ультразвука, что является более жестким способом. К данному виду очистки рекомендуется прибегать только в случае, если промывка специальными жидкостями не дала положительного результата.

Оцените статью:

Поделитесь с друзьями!

Устройство форсунок дизельных двигателей: Тысячу раз в минуту

Инжекторные бензиновые двигатели, в которых топливо впрыскивается во впускной тракт или цилиндры с помощью форсунок, составляют серьезную конкуренцию дизельным по показателю экономичности и экологичности. Это послужило толчком к совершенствованию систем питания дизелей, в частности – форсунок.

Инжекторные бензиновые двигатели, в которых топливо впрыскивается во впускной тракт или цилиндры с помощью форсунок, составляют серьезную конкуренцию дизельным по показателю экономичности и экологичности. Это послужило толчком к совершенствованию систем питания дизелей, в частности – форсунок.

Форсунки – элементы системы питания дизельных двигателей, которые обеспечивают поступление топлива непосредственно в камеру сгорания каждого цилиндра. Форсунка распыляет топливо в форме факела в надпоршневом объеме, а также участвует в процессе дозирования его продачи. И все это происходит с частотой от 400 до 2500 раз в минуту.

По своей конструкции все дизельные форсунки в зависимости от способа управления делятся на механические и электромеханические.

Проверенная механика

Работа классического дизеля основана на тех же принципах, что и сто лет назад, в эпоху создателя этого типа моторов Рудольфа Дизеля. Топливный насос высокого давления (ТНВД), принимая горючее из бака от подкачивающего насоса (низкого давления), в требуемой последовательности поочередно нагнетает нужные порции солярки в индивидуальную магистраль механической форсунки каждого цилиндра. Такие форсунки открываются исключительно «по команде» высокого давления в топливной магистрали и закрываются при его снижении.

Обычная механическая форсунка состоит из корпуса, распылителя с иглой и одной пружины (однопружинная). Игла свободно перемещается в пределах направляющего канала распылителя, обеспечивая в закрытом состоянии надежную герметизацию сопла. В нижней части она упирается в коническое уплотнение распылителя, к которому прижимается расположенной сверху пружиной.

Для преобразования энергии давления топлива, созданного ТНВД, в усилие подъема иглы на ее поверхности предусмотрена ступенька. Топливо подается в специальный объем корпуса непосредственно под ступенькой иглы. Когда давление превышает усилие пружины иглы, она поднимается вверх. При этом обеспечивается открытие каналов распылителя и происходит впрыск топлива. После того, как вся поданная насосом порция горючего проходит через распылитель в камеру сгорания, давление начинает падать, и игла под воздействием усилия пружины опускается. Подача топлива при этом прекращается. Давление впрыска топлива составляет 400 – 600 кг/см2.

Варьируя параметры форсунок (геометрию каналов распылителя и их количество, жесткость пружины и др.) и тем настраивая их на оптимальный режим работы, конструкторы научились управлять процессом сгорания топлива.

В некоторых двигателях (например, версиях TDI моделей Mercedes, VW, BMW, Audi и пр.) одна из форсунок может быть оснащена датчиком подъема иглы. Положение иглы важно «знать» блоку управления моторами с электронно управляемыми топливными насосами.

В особую группу форсунок следует выделить двухпружинные. Они имеют более сложную конструкцию, но зато точнее, чем классические однопружинные, управляют процессом топливоподачи. Благодаря этому снижаются жесткость процесса сгорания и шум. Положительный эффект обеспечивается двухступенчатым подъемом иглы, во время которого поочередно преодолевается сопротивление каждой из двух пружин. На холостом ходу и при малых нагрузках работает только первая ступень, «подкармливая» двигатель небольшим количеством топлива. На мощностных режимах поступают две порции топлива: сначала малая (до 20% общего объема), затем большая. Это смягчает, продлевает и делает более полным процесс сгорания. Кроме того, уменьшились расход топлива и токсичность отработавших газов. Давления открытия ступеней отличаются незначительно, например, у дизелей с разделенной камерой сгорания* составляют 130 и 180 кг/см2. Давление впрыска основной порции – порядка 800 – 1000 кг/см2.

Сегодня доля двухпружинных конструкций составляет около четверти от общего количества. Такие форсунки применяли в дизелях с непосредственным впрыском**, пока их не потеснила система питания Commоn Rail.

Эпоха электроники

В современных дизелях топливо подается с помощью электромеханических форсунок, у которых за открытие и закрытие иглы отвечает управляемый электроклапан. Пока ему не будет дана команда от ЭБУ, топливо не поступит к распылителю. Бортовой компьютер определяет момент начала впрыска и его продолжительность, тщательно дозируя горючее длиной импульсов в зависимости от частоты вращения коленвала, нагрузки, положения педалей, температуры двигателя и других факторов. Такая особенность позволяет электронике управлять подачей топлива с высокой точностью, в благоприятном режиме с точки зрения экономичности и экологичности.

Электромеханические форсунки в дизелях с системой питания типа Common Rail могут работать в многоимпульсном режиме: в ходе одного цикла топливо впрыскивается несколько раз – от двух до семи. Этим удалось добиться более плавного нарастания давления газов на поршень и более качественного сгорания топлива, что в итоге снизило шум и количество вредных компонентов в выхлопе. Давление впрыска в данных системах питания удалось повысить до 1600 кг/см2. При этом еще больше улучшилась точность дозирования и равномерность распределения топлива по цилиндрам.

Един в двух лицах

Во второй половине 90-х годов некоторые дизели стали оснащать еще одной разновидностью системы питания – без ТНВД. Его функции переложили на насос-форсунки. Подкачивающий насос подает к ним топливо под небольшим давлением. Каждая форсунка снабжена своей плунжерной парой, которую приводят в действие кулачки распределительного вала. Преимуществ у таких систем питания несколько. Во-первых – большее давление топливоподачи (от 1200 до 2050 кг/см2), что обеспечивает более качественое распыление. Во-вторых, отсутствие громоздкого ТНВД с отдельным приводом и инерционных систем распределения горючего. Все это способствовало повышению точности начала впрыска и дозировки.

Насос-форсунки оборудованы электроклапаном и могут работать в двухимпульсном режиме. Как и в предыдущих случаях, это позволяет произвести предварительный впрыск перед основным, подавая в цилиндр сначала небольшую порцию топлива, смягчает работу мотора и снижает токсичность выхлопа. Негативная особенность насос-форсунок – зависимость давления впрыска от оборотов двигателя и высокая стоимость данной технологии даже по сравнению с Common Rail.

* Разделенная камера сгорания – камера, состоящая из двух полостей – надпоршневой и вспомогательной в головке блока или в самом блоке. Применяется для увеличения энергии воздушных потоков
** Непосредственный впрыск в дизелях – подача топлива в камеру сгорания, состоящую из одного надпоршневого объема

 Распылители

Одна из наиболее ответственных деталей форсунки – распылитель. Они отличаются количеством распылительных отверстий и способом регулирования топливоподачи. Предкамерные и вихрекамерные дизели (т.е. с разделенной камерой сгорания), как правило, оснащают распылителями с одним отверстием и иглой. На конце их иглы может быть штифт. Такие форсунки называют штифтовыми (1). Благодаря тому, что штифт иглы большую часть цикла находится в отверстии, появляется возможность подавать основную часть топлива в короткое время в конце цикла, после полного подъема иглы. Таким образом обеспечивается благоприятный режим сгорания и более мягкая работа дизеля.

На дизели с непосредственным впрыском (с неразделенными камерами сгорания) устанавливают форсунки с несколькими распылительными отверстиями (от двух до шести). Есть два типа многоструйных распылителей: с перекрываемыми отверстиями (2) и закрытым объемом (3). В первых для прекращения подачи топлива игла перекрывает непосредственно каждый канал распылителя, т. е. контактирует с каждым отверстием. В форсунках с закрытым объемом игла не перекрывает само отверстие – она «глушит» небольшой объем в самом низу распылителя. Из-за остатка топлива в этом объеме, которое впоследствии испаряется, возникают проблемы со снижением токсичности отработавших газов.

Игорь Широкун
Фото Bosch

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Устройство форсунки двигателя, бензиновые и дизельные, промывка и чистка

Автомобильная форсунка — устройство, отвечающее за непосредственное распыление топлива внутри камеры сгорания. Непосредственный впрыск — модификация распределенного впрыска горючего, где горючее впрыскивается в цилиндры напрямую. Форсунка — основной связывающий компонент между топливным насосом и мотором. Существует несколько модификаций данного устройства. На современных двигателях используют форсунки, которые оснащены электронным управлением впрыска. Главное предназначение форсунок:

  • обеспечение правильной дозировки топливной смеси;
  • обеспечение правильной струи топливной смеси — кол-во, давление, угол.

Принцип действия форсунки

Топливо в форсунку подается под давлением. При этом блок управления мотором посылает электроимпульсы на электромагнит инжектора, которые активируют работу игольчатого клапана, отвечающего за состояние канала (открыто/закрыто). Количество поступающего топлива определяется длительностью поступающего импульса, влияющего на промежуток нахождения игольчатого клапана в открытом состоянии.

По методу впрыска современные топливные форсунки делятся на три вида – электромагнитные, электрогидравлические и пьезоэлектрические.

  • Электромагнитные форсунки. Такой вид форсунок зачастую устанавливают в бензиновые двигатели. Подача напряжения на обмотку возбуждения клапана происходит строго в установленное время, в соответствии с заложенной программой. Напряжение создает определенное магнитное поле, которое затягивает грузик с иглой из клапана, тем самым высвобождая сопло. Результатом всех действий является впрыск нужного количества топлива. По мере снижения напряжения, игла принимает исходное положение. Визуальное устройство форсунки бензинового двигателя показано на рисунке слева.
  • Электрогидравлическая форсунка. Использование такой системы можно часто увидеть в автомобилях, оснащённых дизелем. Такие инжекторные форсунки состоят из сливной и впускной дроссели, электромагнитного клапана и камеры. Путем изменения давления топлива легко добиться возможности управлять его подачей на цилиндры, и эта особенность является главным отличием инжектора от аналогичных механизмов. Визуальное устройство форсунки дизельного двигателя показано на рисунке слева.
  • Пьезоэлектрические форсунки. Последний вид форсунок принято считать наиболее совершенным и перспективным среди всех описанных видов. Пьезофорсунки используются только на дизельных двигателях внутреннего сгорания с системой подачи топлива Common Rail. Визуальное устройство форсунки Common Rail показано на рисунке слева.

Проблемы и неисправности форсунок двигателя

Для поддержания нормальной работы топливной системы необходимо проводить периодическую чистку форсунок. По мнению специалистов, процедура должна выполняться каждые 20-30 тыс. км пробега, но на практике необходимость в таких работах возникает уже после 10-15 тыс. км. пробега. Это связано с некачественным топливом, плохим состоянием дорог и не всегда правильным уходом за машиной.

К самым актуальным проблемам, преследующими форсунки любого типа, относится появление на стенках деталей отложений, являющихся следствием использования низкокачественного топлива. Результатом является появление загрязнений в системе подачи горючей жидкости и возникновение перебоев в работе, потеря мощности мотором, чрезмерный расход ГСМ. Причинами, влияющими на работу форсунок, могут быть:

  • чрезмерное содержание серы в топливе;
  • коррозия металлических элементов;
  • износ;
  • засорение фильтров;
  • воздействие высоких температур;
  • проникновение влаги и воды.

Надвигающиеся неполадки можно определить по ряду признаков, таких как появление незапланированных сбоев при старте двигателя, увеличение расхода топлива, появление выхлопа черного цвета, нарушение ритмичности работы мотора на холостом ходу.

Способы чистки форсунок

Существует три метода чистки форсунок:

  • ультразвуковая чистка;
  • промывка инжектора через топливную рампу;
  • добавление в топливо специальной промывки.

Ультразвуковая чистка, пожалуй, самая эффективная, но имеет ряд недостатков. Так, с помощью данного метода очищаются лишь сами форсунки, другие же части топливной системы не затрагиваются. Кроме того, данный метод исключен для форсунок, в конструкции которых содержатся элементы керамики (они разрушаются под действием ультразвука).

Метод чистки инжектора через топливную рампу подразумевает присоединение к ней трубок, через которые подается специальный химический состав под высоким давлением. Подобную процедуру выполняют, как правило, на сервисе. Стоимость ее довольно высока. После данной процедуры в обязательном порядке следует заменить свечи зажигания.

Прочистка форсунок посредством специального химического состава, заливаемого в бак, зачастую малоэффективна. Химические соединения, как правило, не способны справиться с сильным загрязнением. Данный способ хорош в профилактических целях, но не для чистки непосредственно. В состав подобных соединений для чистки входят жидкие компоненты, нацеленные на удаление налета, а также мелкодисперсные частицы с абразивными свойствами. Они должны очищать топливопровод от продуктов окисления и налета, а форсунки под их воздействием должны очищаться от нагара. В результате форма распыла топлива вновь должна приобрести правильную конусообразную форму.

Топливная форсунка. Назначение, устройство, принцип работы

Видео: Устройство и принцип действия насос форсунки. Принцип работы форсунки инжекторного двигателя. Изучаем Common Rail. Дизельные форсунки. Разбираем топливную форсунку. Промывка топливной форсунки своими руками. Что убивает форсунки дизельного двигателя. Регулировка дизельных форсунок на стенде в домашних условиях. Работа распылителя и стенда КИ-562

Форсунка — это элемент системы впрыска, предназначенный для дозированной подачи топлива, его распыления в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси.

Форсунки используются в системах впрыска как бензиновых, так и дизельных двигателей. На современных двигателях устанавливаются форсунки с электронным управлением впрыска.

В зависимости от способа осуществления впрыска различают:

  • электромагнитные форсунки
  • электрогидравлические форсунки
  • пьезоэлектрические

Общий вид форсунки системы «Коммон рейл» фирмы «Бош» показан на рисунке.

Рис. Разрез электрогидравлической форсунки фирмы Бош:
1 – отводящий дроссель; 2 – игла; 3 – распылитель; 4 – пружина запирания иглы; 5 – поршень управляющего клапана; 6 – втулка поршня; 7 – подводящий дроссель; 8 – шариковый управляющий клапан; 9 – шток; 10 – якорь; 11 – электромагнит; 12 – пружина клапана

Форсунка состоит из:

  • электромагнита 11
  • якоря электромагнита 10
  • маленького шарикового управляющего клапана 8
  • запорной иглы 2
  • распылителя 3
  • поршня управляющего клапана 5
  • подпружиненного штока 9

Шарик клапана прижимается к седлу с усилием пружины и электромагнита. Сила пружины рассчитана на давление до 100 кг/см2, что значительно ниже давления в линии высокого давления (250…1800 кг/см2), поэтому только при приложении усилия электромагнита шариковый клапан не отойдет от седла, отделяя аккумулятор от линии слива. Игла распылителя форсунки в нерабочем состоянии прижимается к седлу пружиной распылителя – это предотвращает попадание воздуха в форсунку при пуске двигателя.

В отличие от бензиновых электромеханических фор­сунок, в форсунках «Коммон Рейл» электромагнит при давлении 1350 … 1800 кгс/см2 не в состоянии поднять за­порную иглу, поэтому используется принцип гидроусиления.

Рис. Принцип действия электрогидравлической форсунки:
а – форсунка в закрытом состоянии; b – форсунка в открытом состоянии; c – фаза закрытия форсунки

При создании давления в аккумуляторе, оно действует как на конусную поверхность иглы, так и на поршень управляющего клапана 5. Поскольку площадь рабочей поверхности поршня на 50% больше площади конусной поверхности иглы, игла распылителя продолжает прижиматься к седлу.

При подаче напряжения от блока управления на электромагнит 11, шток 9 якоря штока поднимается и открывается шариковый управляющий клапан 8. Давление в камере управления 7 падает в результате открытия дроссельного отверстия и топливо пропускается из зоны над поршнем управляющего клапана в зону слива. Давление на поршень управляющего клапана падает, так как подводящее дроссельное отверстие управляющего клапана имеет меньшее сечение чем отводящее. Запорная игла 2 при этом под действием высокого давления в кармане распылителя 3 открывается. Количество подаваемого топлива зависит от времени подачи напряжения в электромагнит 11, а значит от времени открытия шарикового управляющего клапана 8. При прекращении подачи напряжения на электромагнит 11, якорь под действием пружины опускается вниз, при этом шариковый управляющий клапан закрывается, давление в камере управления восстанавливается через специальный жиклер. Под действием давления топлива на поршень управляющего клапана 5, имеющего диаметр больше диаметра иглы, последняя закрывается.

На входе топлива в форсунку установлен аварийный ограничитель подачи топлива. Он предотвращает опорожнение аккумулятора через форсунку с зависшей иглой или клапаном управления, а также повреждение соответствующего цилиндра дизеля. В нем используется принцип возникновения разницы давлений по обе стороны от клапана 1 при прохождении топлива через его жиклеры 2. Сечение жиклеров, за­тяжка пружины 3 и диаметр клапана подобраны по максимальной продолжительности и расходу, т.е. подаче топлива.

Рис. Аварийный ограничитель подачи топлива через форсунку

В системах «коммон рейл» первых поколений общее количество горючей смеси, впрыскиваемой в цилиндр, разделялось на предварительное и основное. Однако более гармоничной является такая схема сгорания, когда во время одного рабочего такта горючая смесь будет разделена на возможно большее количество частей. До сих пор добиться этого было невозможно по причине инерционности традиционных форсунок с электромагнитным управлением.

Одним из путей совершенствования системы «коммон рейл» является увеличение быстродействия открытия форсунки. Минимальное время открытия форсунки для электромагнита с подвижным сердечником составляет 0,5 мс, что не позволяет оперативно изменять подачу топлива. Для более быстрого срабатывания форсунки в настоящее время применяется пьезокерамическая форсунка, которая работает вчетверо быстрее.

Известно, что при подаче электрического напряжения на пьезокерамическую пластинку она на несколько микрон изменяет свою толщину.

Пьезоэлемент, являющийся исполнительным элементом форсунки, представляет собой параллелепипед длиной 30…40 мм, состоящий из спеченных между собой 300 керамических пластинок (кристаллов), расширяющийся на 80 мкм всего за 0,1 мс, чего достаточно  чтобы воздействовать на иглу форсунки с усилием 6300 Н. При этом для управления пьезоэлементом используют напряжение бортовой сети автомобиля.

Рис. Пьезоэлемент

Для усиления пьезоэффекта в керамику добавляют палладиум и цирконий. Пьезоэлемент потребляет энергию только при подаче напряжения и регенерирует ее при выключении напряжения, таким образом, являясь регенератором энергии.

Использование пьезоэлемента, кроме быстроты срабатывания, обеспечивает большую силу открытия клапана сброса давления над иглой форсунки и высокую точность хода для быстрого сброса давления подачи топлива.

Электрогидравлическая форсунка с пьезоэлементом показана на. Основными составляющими форсунки являются модуль исполнительного элемента, состоящего из пьезоэлектрического элемента и его составляющих, модуль плунжера, состоящего из поршней, амортизатора давления и пружины, клапан переключения, игла. Для окончательной очистки топлива применяется специальный стержневой фильтр.

 

Рис. Разрез пьезоэлектрогидравличе­ской форсунки:
1 ­– патрубок рециркуляции; 2 – электрический разъем; 3 – стержневой фильтр; 4 – корпус форсунки; 5 – пьезоэлектричесий элемент; 6 – сопряженный поршень; 7 – поршень клапана; 8 – клапан переключения; 9 – игла форсунки; 10 – амортизатор давления

Увеличение длины модуля исполнительного элемента преобразуется модулем соединителя в гидравлическое давление и перемещение, воздействующие на клапан переключения. Модуль плунжера действует как гидравлический цилиндр. На него постоянно воздействует давление подачи топлива 10 кгс/ см2 через редукционный клапан в обратной магистрали.

Топливо выполняет роль амортизатора давления между плунжером соединителя выпускного дросселя 8 и плунжером клапана 5 в модуле плунжера. Из пустого закрытого инжектора (присутствует воздух) воздух удаляется при стартерном пуске двигателя (с частотой вращения вала стартера). Помимо этого, инжектор наполняется топливом, подаваемым погруженным в топливном баке насосом, проходящим через управляемый обратный клапан против направления потока топлива.

Клапан переключения состоит из пластины клапана, плунжера клапана 5, пружины клапана и пластины дросселя 3. Топливо под давлением протекает через впускной дроссель 4 в пластине дросселя к игле форсунки и в камеру над иглой форсунки. Благодаря этому происходит выравнивание давления над и под иглой форсунки. Игла форсунки удерживается в закрытом положении силой пружины форсунки. При нажиме плунжера клапана 5 открывается канал выпускного дросселя и топливо под давлением вытекает через выпускной дроссель 8 большего размера, расположенный над иглой форсунки. Топливо под давлением поднимает иглу форсунки, в результате чего происходит впрыск. Благодаря быстрым командам на переключение пьезо-электрического элемента за один рабочий такт друг за другом производятся несколько впрысков.

Рис. Принцип работы пьезофорсунки:
1 – игла форсунки; 2 – пружина форсунки; 3 – пластина дросселя; 4 — впускной дроссель; 5 – плунжер клапана; 6 – линия высокого давления; 7 – соединительный элемент; 8 – выпускной дроссель; а – форсунка закрыта; б — форсунка открыта

Из-за особенностей процесса сгорания, присущих дизельным двигателям с турбонаддувом, для уменьшения шума и снижения выброса оксидов азота в цилиндры двигателя перед впрыском основной дозы топлива подается небольшая капля топлива (1…2 мм3) «пилотный впрыск», которая плавно перетекает в распыление остальной части топлива. Предварительный впрыск позволяет топливу воспламеняться быстрее. Давление и температура при этом возрастают медленнее чем при обычном впрыске, что уменьшает «жесткость» работы двигателя и его шум с одновременным снижением выбросов окислов азота. Характер процесса двойного впрыска показан на рисунке:

Рис. График процесса двойного впрыска и характер распыления топлива

При холодном двигателе и в режиме, приближенном к холостому ходу, происходит два предварительных впрыска. При увеличении нагрузки предварительные впрыски один за одним прекращаются, пока при полной нагрузке двигатель не перейдет в режим основного впрыска. Оба дополнительных впрыска необходимы для регенерации сажевого фильтра.

Благодаря тому, что пьезофорсунки имеют намного меньшее время срабатывания, чем традиционные электромагнитные, стало возможным разделение горючей смеси на несколько отдельных микродоз: после многократных предварительных впрыскиваний очень небольших количеств горючей смеси следуют либо основное впрыскивание, либо при необходимости многие так называемые «послевпрыскивания».

Рис. Характер протекания процесса многоступенчатого впрыска

Время между предварительным впрыскиванием и основным впрыскиванием составляет 100 мс. Объем топлива, попадающего в цилиндр в момент каждого предварительного впрыскивания, составляет 1,5 мм3. Это делается для равномерного распределения давления в камере сгорания и, соответственно, уменьшения шума, создаваемого в процессе сгорания. После впрыскивания, в свою очередь, служат для снижения токсичности отработавших газов. Если в конце цикла сгорания произвести еще одно впрыскивание в цилиндр, то оставшиеся частицы сгорают лучше. Кроме того, в случае, когда во впускной системе установлен фильтр для улавливания несгоревших частиц, такая технология за счет высокой температуры способствует его очистке. Это особенно актуально для двигателей с большим рабочим объемом.

Более того, сейчас стало возможным использовать до семи тактов впрыска вместо трех за один рабочий процесс. Благодаря этому появляются новые возможности для увеличения номинальной мощности двигателя и еще более точного контроля за составом отработавших газов.

Новое поколение форсунок позволяет регулировать не только количество впрыска по времени и его фазы, но и управлять подъемом иглы, что позволяет более четко управлять процессом впрыска.

В настоящее время производители дизельной топливной аппаратуры, например фирма Бош, разработала системы Common Rail с давлением впрыска до 2500 кгс/см2. В этих системах форсунка отличается от традиционной тем, что максимальное давление создается не гидроаккумуляторе, а в самой форсунке. Она снабжена миниатюрным гидроусилителем давления и двумя электромагнитными клапанами, позволяющими варьировать момент впрыска и количество топлива в пределах одного рабочего цикла. Таким образом, здесь совмещены принципы работы Common Rail и форсунки.

Другим направлением форсунок фирмы Bosch является устройство в форсунках небольшого напорного резервуара, сокращающего обратный ход к циклу низкого давления. Это позволяет увеличить давление впрыска и КПД системы.

Форсунки с повышенным давлением впрыска соответствуют нормам Евро-6.

Где в автомобиле находятся форсунки?

Тип впрыска топливаРасположение форсунок
Центральный впрыскОдна или две форсунки располагаются во впускном трубопроводе перед дроссельной заслонкой. Таким образом, форсунка заменяет устаревшую технологию – карбюратор.
Распределенный впрыскДля каждого цилиндра установлена своя форсунка, которая осуществляет впрыск топлива во впускной трубопровод цилиндра. Форсунка располагается у основания впускного трубопровода
Непосредственный впрыскФорсунки располагаются в верхней части стенок цилиндра и впрыскивают топливо непосредственно в камеру сгорания.

Системы насос-форсунок

и насосных систем

Системы насос-форсунок и насосных агрегатов

Magdi K. Khair, Hannu Jääskeläinen

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Реферат : В насос-форсунках и насос-форсунках отдельный насос обслуживает каждый цилиндр двигателя. В свое время система насос-форсунок была способна развивать самое высокое давление впрыска среди всех типов систем впрыска.Несмотря на то, что были разработаны передовые системы насос-форсунок с электронным управлением с возможностью многократного впрыска и регулирования расхода, на смену насос-форсункам постепенно приходит технология Common Rail.

Введение

В системах насос-форсунок (UI) и насос-насосов (UP) каждый цилиндр двигателя обслуживается отдельным насосом впрыска или насосом впрыска в непосредственной близости от цилиндра. Системы блочного насоса (UP) позволяют укоротить топливные магистрали высокого давления, располагая насос рядом с форсункой.Объединение насосного элемента и инжектора в один узел, как в системах насос-форсунок (UI), позволяет полностью исключить эти линии. Исключение или уменьшение длины топливопроводов высокого давления в системах впрыска UI / UP дает два преимущества:

  • Уменьшение проблем с динамикой линии : трудности с динамикой линии в насос-форсунках / насосных системах вызывают меньше проблем, чем в их аналогах «насос-линия-сопло» (P-L-N). Возможность наложения волн, которая мешает системам P-L-N, вызывая последующие закачки и способствуя задержкам впрыска, значительно снижается.Однако следует отметить, что проблемы динамики линии, возникающие в узких проходах насос-форсунок, могут все же модулировать скорость впрыска [371] .
  • Более высокое давление впрыска : система UI традиционно имела самое высокое давление впрыска среди всех типов систем впрыска. В начале 2000-х годов системы UI имели допустимое давление 200 МПа по сравнению с 160 МПа в системах Common Rail. С тех пор пиковое давление впрыска в системе UI / UP выросло до 250 МПа для некоторых приложений 2007 модельного года.

Что касается давления топлива, следует отметить, что давления в системе впрыска топлива с общей топливораспределительной рампой также выросли и в некоторых системах достигли или превысили давления, доступные из систем UI / UP. Хотя нет никаких технических причин, препятствующих дальнейшему росту давления UI / UP, производители двигателей все чаще используют системы Common Rail в приложениях, где традиционно преобладают системы UI / UP. По этой причине системы UI / UP, скорее всего, не претерпят значительных изменений, кроме их текущего пикового давления, составляющего около 250 МПа.

Обе системы UI и UP приводятся в действие от распределительного вала двигателя. В одной общей конструкции механической системы регулирование подачи топлива обычно достигалось путем вращения насосного элемента (плунжера) таким же образом, как это делается в системах P-L-N. С внедрением электроники в дизельные двигатели были разработаны системы насос-форсунок (EUI) и насос-форсунки (EUP). В них используется перепускной клапан с электромагнитным управлением для регулирования подачи топлива.

Благодаря наличию топливных магистралей насосную систему агрегата можно отнести к варианту системы впрыска P-L-N.Однако конструкция насос-насосов и насос-форсунок часто схожа, поэтому их удобно обсуждать вместе. Фактически, некоторые производители предлагают свои системы впрыска как в версии UI, так и в версии UP (сравните Рисунок 4 и Рисунок 11).

Коммерческое применение насос-форсунок началось в 1930-х годах на дизельных двигателях Winton (дочерняя компания GM) и GM. Winton продолжала поставлять двигатели Electro-Motive Corporation (EMC), в то время как GM передала производство дизельных двигателей своему Detroit Diesel Division.Линия двухтактных двигателей Detroit Diesel Corporation — одно из наиболее известных применений технологии насос-форсунок. С 1930-х до середины 1980-х годов Detroit Diesel использовала конструкцию с механическими насос-форсунками. В 1985 году двухтактный двигатель Detroit Diesel серии 92 стал первым дизельным двигателем для тяжелых условий эксплуатации, в котором применен узел впрыска [2151] с электронным управлением. С момента появления электронного управления насос-форсунки продолжали развиваться до более высокого уровня сложности. Эволюция для легких и тяжелых условий эксплуатации шла разными путями.

Возможно, самой передовой конструкцией насос-форсунок для легких условий эксплуатации является инжектор PPD, который в течение короткого времени производился Volkswagen Mechatronic (совместное предприятие Volkswagen и Siemens VDO), начиная с 2004 года, для применений Euro 4 2006 модельного года. В этом инжекторе использовался пьезоэлектрический привод, и он был способен производить до 2 предварительных впрысков и 2 дополнительных впрыска в дополнение к основному впрыску. Тем не менее, это произошло в то время, когда системы Common Rail уже нашли применение в легких грузовых автомобилях и быстро завоевали популярность.Инжектор PPD не мог конкурировать с системами Common Rail, и вскоре после его запуска был снят с производства. Начиная с 2007 года он был заменен на Common Rail для приложений Euro 5. С тех пор системы Common Rail стали предпочтительным выбором для легких двигателей, а насос-форсунки быстро исчезают из новых конструкций двигателей.

Для тяжелых условий эксплуатации электронные насос-форсунки продолжали развиваться. Эволюция некоторых из этих конструкций описана в статье о системах впрыска в двигателях HD.Вершина конструкции насос-форсунок для тяжелых условий эксплуатации представлена ​​двухклапанными конструкциями форсунок Delphi E3 и Caterpillar MEUI-C для двигателей, отвечающих стандартам выбросов загрязняющих веществ на дорогах Агентства по охране окружающей среды США 2007 года. В то время как эти передовые конструкции насос-форсунок обладают такими возможностями, как регулирование скорости и множественный впрыск, системы Common Rail для тяжелых условий эксплуатации достигли такой степени, что они заменяют насос-форсунки во многих новых конструкциях двигателей для рынков с наиболее строгими стандартами выбросов.Чтобы облегчить этот переход, производители оборудования для впрыска топлива разработали системы Common Rail, которые можно легко установить на платформы двигателя, которые изначально были разработаны для насос-форсунок или насосных систем, что позволяет избежать необходимости в совершенно новой конструкции двигателя.

###

BASCOLIN Тестер форсунок Common Rail S60H Тестер дизельных форсунок CR-C Тестер привода топливных форсунок Инструмент для измерения давления в Common Rail: автомобильный


В настоящее время недоступен.
Мы не знаем, когда и появится ли этот товар в наличии.

  • Убедитесь, что это подходит
    введя номер вашей модели.
  • Тестер форсунок Common Rail S60H

  • Инструменты для проверки топливных форсунок CR-C

  • Стенд для испытания форсунок Common Rail

  • Тестер форсунок и привод форсунок CR-C

  • комплекты инструментов для форсунок Common Rail


См. Дополнительные сведения о продукте

Инжектор

| Определение, применение и принцип

Инжектор , устройство для впрыска жидкого топлива в двигатель внутреннего сгорания.Этот термин также используется для описания устройства для впрыска питательной воды в бойлер.

четырехтактный дизельный двигатель

Типичная последовательность событий цикла в четырехтактном дизельном двигателе включает единственный впускной клапан, форсунку для впрыска топлива и выпускной клапан, как показано здесь. Впрыскиваемое топливо воспламеняется за счет реакции на сжатый горячий воздух в цилиндре, что является более эффективным процессом, чем в двигателе внутреннего сгорания с искровым зажиганием.

Encyclopædia Britannica, Inc.

В дизельных двигателях для правильного сгорания топливо должно быть в сильно распыленной форме.Обычно это достигается с помощью плунжера и цилиндра (впрыск твердого вещества), который нагнетает точно отмеренные количества жидкого топлива в камеры сгорания через распылительные форсунки. Иногда вместо поршня используется сжатый воздух (нагнетание воздуха). Эти форсунки широко используются в таком дизельном оборудовании, как железнодорожные локомотивы, грузовики, автобусы, землеройные машины, корабли и стационарные электростанции, а также иногда встречаются в двигателях с искровым зажиганием самолетов и грузовых автомобилей.

В форсунках питательной воды котла используется высокоскоростная паровая струя, которая нагнетает воду в котел.Поскольку трудно было поверить, что пар из котла может нагнетать и сам себя, и питательную воду обратно в котел, введение в производство (1859 г.) таких форсунок их изобретателем Анри Жиффаром вызвало большой интерес. Они могут использовать отработанный пар при атмосферном давлении для подачи питательной воды с расходом 1 мегапаскаль (150 фунтов на квадратный дюйм). Принцип аналогичен используемому в эжекторе. При смешивании с относительно холодной питательной водой пар конденсируется, передавая большую часть своего количества движения воде.Кинетическая энергия, связанная с результирующей высокой скоростью, преобразуется в давление в сходящемся-расширяющемся канале, доставляя воду в бойлер. Сейчас почти полностью заменены центробежными питательными насосами котлов, такие форсунки представляют прежде всего исторический интерес.

инжектор

Паровой инжектор Анри Жиффара.

Иллюстрация из Открытий и изобретений XIX века Роберта Рутледжа, George Routledge and Sons, Limited, 1900

Впрыск дизельного топлива — Журнал Diesel Power

Фото 2/12

| поломка Diesel Fuel Injection Tech

Ключевым ингредиентом для достижения максимальной максимальной производительности дизельного двигателя является увеличение количества сжигаемого дизельного топлива.На старых двигателях с механическим впрыском единственный способ сделать это — изменить форсунки и / или топливный насос. Новые системы электронного впрыска имеют несколько способов увеличить количество топлива, поступающего в цилиндры, но в конечном итоге пиковая выработка мощности все же сводится к механическим ограничениям компонентов впрыска, которые создают давление топлива и впрыскивают дизельное топливо в камеры сгорания.

Топливная система большинства дизельных двигателей состоит из трех основных частей: инжектора, топливного насоса высокого давления и, в некоторых случаях, блока управления двигателем (ЭБУ).В большинстве дизельных двигателей топливные форсунки установлены в головках цилиндров двигателя, а наконечник или сопло форсунки впрыскивает непосредственно в камеру сгорания. Во многих случаях инжектор устанавливается так же, как свеча зажигания в газовом двигателе. Но в отличие от газовых двигателей с впрыском топлива, которые впрыскивают топливо под давлением 10-60 фунтов на квадратный дюйм, системы впрыска дизельного топлива работают в диапазоне от 10 000 до 30 000 фунтов на квадратный дюйм.

Фото 3/12

| ТНВД для дизельного топлива

Насос VE представляет собой аксиально-поршневой насос распределительного типа с механическим управлением.Его входной вал приводится в движение двигателем, а давление топлива осуществляется аксиальными поршнями. Топливо в форсунки подается распределителем, управляемым портом; это механическое устройство контролирует синхронизацию и количество топлива, поступающего в каждую форсунку.

Фото 4/12

| Дизельный топливный инжекторный насос bosch Cp3 Common Rail

CP3 — это радиально-поршневой насос для систем впрыска Common Rail высокого давления. Производители, похоже, ориентируют все дизели на систему впрыска Common-Rail.С переходом нового 6,4-литрового двигателя Ford Power Stroke на систему Common Rail от Siemens все отечественные грузовики с дизельным двигателем 3/4 и 1 тонны теперь будут использовать технологию Common Rail. В системе Common-Rail используется (и) аккумуляторная рейка (и) для поддержания высокого давления топлива; эта рейка (и) подает топливо к форсункам. Насос CP3 работает аналогично VP44, но главное отличие состоит в том, что в CP3 нет соленоида для подачи топлива к форсункам. В системе Common-Rail используются либо электромагнитный клапан, либо пьезоэлектрические форсунки для управления количеством топлива и синхронизацией.CP3, используемые в двигателях Cummins и Duramax, очень похожи. Единственное отличие состоит в том, что Duramax CP3 использует разные фитинги для питания двух направляющих (по одной для каждого ряда цилиндров), тогда как Cummins CP3 питает только одну направляющую для всех шести цилиндров.

Модифицированные насосы CP3 доступны для увеличения расхода топлива на 30 процентов, и, в зависимости от других модификаций двигателя, это добавит 60-100 л.с. Также есть комплекты для работы с двумя CP3 на Duramax или Cummins. В этот комплект добавляется второй CP3, приводимый в движение ременным шкивом.Благодаря вдвое большей производительности насоса хорошее давление топлива может поддерживаться при использовании агрессивных форсунок и электроники.

Фото 5/12

| технология впрыска дизельного топлива bosch P7100

P7100, или P-насос, представляет собой насос прямого впрыска, который использует кулачок для приведения в действие плунжеров для повышения давления топлива. По мнению некоторых фанатиков дизельного топлива, это мать всех ТНВД из-за своих исключительных возможностей. Хотя на 24-клапанном Cummins он был заменен электронным насосом VP44, некоторые сильно модифицированные грузовики сделали шаг назад и заменили VP44 насосом P из-за его способности перекачивать большое количество топлива.

На вторичном рынке предлагаются десятки улучшений производительности для насоса P, что делает его дизельным двигателем Holley на 4 барреля. Только Industrial Injection имеет три уровня модифицированных P7100: Dragon Fly имеет небольшие модификации и использует стандартные 12-миллиметровые насосы, способные подавать 550 куб.см топлива, Dragon Flow использует 13-миллиметровые насосы для подачи 800 куб.см топлива, а Super Dragon Flow использует 14-миллиметровые насосы. за 1400 куб. см подачи топлива. Все эти насосы могут быть изменены по времени.

Фото 6/12

| Дизельное топливо Injection Tech cps Dual Feed Fuel Line

Эта деталь от Industrial Injection увеличивает объем топлива, подаваемого в топливную систему Common Rail, за счет добавления дополнительной линии подачи топлива между насосом и Common Rail.Недостаток системы common-rail заключается в том, что после полного открытия дроссельной заслонки рельс требует времени, чтобы восстановиться до максимального давления топлива. Линии двойной подачи спроектированы так, чтобы вдвое сократить время восстановления рельсов. Также используются менее ограничительные фитинги для увеличения расхода топлива. Industrial Injection утверждает, что эта простая модификация может добавить до 50-70 л.с.

Фото 7/12

| Дизельное топливо Injection Tech 59l Cummins Injector

Этот инжектор Bosch использовался в 12-клапанных двигателях Cummins первого и второго поколения.Единственное отличие состоит в том, что размер впускного отверстия в двух моделях Cummins был немного изменен. Эти гидравлические форсунки срабатывают или лопаются, когда они получают от насоса необходимое количество и давление топлива. Самая распространенная и простая модификация любого инжектора — это удалить форсунку и либо увеличить размер отверстий, либо добавить больше отверстий, либо сделать то и другое (в некоторых случаях). На вторичном рынке имеется ряд форсунок, соответствующих потребностям клиентов. Обычно форсунки с высокой мощностью имеют внутреннюю модификацию, так что форсунка и штифт питаются от второго впускного отверстия для топлива.Также могут быть внесены изменения в большинство внутренних компонентов инжектора.

Фото 8/12

| Diesel Fuel Injection Tech bosch Vp44 Впрыскивающий насос

VP44 — это радиально-поршневой насос распределительного типа с электромагнитным клапаном и электронным управлением. Bosch VP44 приводится в движение двигателем, а давление топлива осуществляется несколькими радиальными поршнями. Внутренний радиальный поршень нагнетает топливо, а электромагнитный клапан высокого давления открывает и закрывает выпускное отверстие камеры, которое распределяет определенное количество топлива на каждый из шести форсунок.VP44 имеет встроенный блок управления двигателем, который обменивается данными по шине CAN с главным блоком управления двигателем и требует электрического подъемного насоса для подачи дизельного топлива из топливного бака. Насосы VP44 с горячими стержнями могут добавить до 100 л.с. благодаря различным программам программирования. на ЭБУ насоса, а также внутренние механические модификации для регулировки времени и производительности.

Фото 9/12

| Дизельное топливо Injection Tech 24 Valve Cummins Injector

24-клапанный инжектор очень похож на инжектор, используемый в более старых 12-клапанных двигателях.Он выглядит иначе, потому что в нем используется ступенчатый держатель сопла, но внутри он работает аналогичным образом. Форсунки инжектора модифицируются с использованием электроэрозионной машины (EDM) или процесса экструдирования-хонингования, а иногда и того и другого. В процессе электроэрозионной обработки используются электрод и раствор электролита, тогда как в процессе экструдирования-хонирования используется абразивная жидкость для увеличения размера отверстия.

Фото 10/12

| технология впрыска дизельного топлива heui

HEUI был разработан Caterpillar и используется в 7.3L Power Stroke V-8. Этот инжектор значительно отличается от инжекторов Bosch, потому что он использует масляный насос с приводом от двигателя для подачи масла под высоким давлением в инжектор для повышения давления топлива. Поскольку давление масла используется для повышения давления топлива внутри форсунки, топливный насос высокого давления не нужен. Топливо подается в форсунку при относительно низком давлении (50-70 фунтов на квадратный дюйм), и соленоид управляет потоком масла под высоким давлением, поступающим в поршневой механизм, для увеличения давления впрыска до 21000 фунтов на квадратный дюйм.Чтобы увеличить поток форсунки, на вторичном рынке либо экструдируют, либо EDM форсунки форсунки, в зависимости от требований заказчика. Также внесены изменения во внутренний насосный механизм форсунки; используются плунжеры большего размера, а внутренние детали обрабатываются иначе. Когда используются сильно модифицированные форсунки, Industrial Injection рекомендует использовать сдвоенные масляные насосы высокого давления, чтобы форсунка не испытывала недостатка масла.

В двигателях Duramax и Cummins используется один и тот же насос Bosch CP3, поэтому логично, что форсунки также очень похожи.

Хотя внешний вид форсунок отличается, внутреннее устройство и функции этих форсунок очень похожи. Электромагнитный клапан в верхней части форсунки регулирует подачу топлива в форсунку из общей магистрали. Большинство доступных чипов и загрузчиков изменяют время, в течение которого этот соленоид остается открытым, для добавления топлива и, следовательно, мощности. Для увеличения впрыскиваемого топлива изменяются размер и форма отверстий в форсунках.

Лучший тестер сопел электрических дизельных форсунок — Отличные предложения по тестерам сопел электрических дизельных форсунок от глобальных продавцов тестеров электрических дизельных форсунок

Отличные новости !!! Вы обратились по адресу, чтобы приобрести электрический тестер форсунок дизельных двигателей.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший тестер форсунок для электрических дизельных форсунок в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели тестер форсунок для электрических дизельных форсунок на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в тестере форсунок для электрических дизельных форсунок и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести тестер форсунок для дизельных двигателей по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Оптическое устройство для измерения открытия форсунок в системах Common Rail

  • AMESim (2004). Руководство пользователя. ПРЕДСТАВИТЬ.

    Google Scholar

  • Амиранте, Р., Дистасо, Э., Тамбуррано, П.и Рейц, Р. Д. (2015a). Измеренные и прогнозируемые выбросы частиц сажи от двигателей, работающих на природном газе. SAE Paper No. 2015-24-2518.

    Google Scholar

  • Амиранте, Р., Касавола, К., Дистасо, Э. и Тамбуррано, П. (2015b). На пути к развитию системы измерения давления в цилиндрах на основе тензометрических датчиков для двигателей внутреннего сгорания. SAE Paper No. 2015-24-2419.

    Google Scholar

  • Амиранте, Р., Каталано, Л. А., Дадоне, А., Ломбардо, В. (2006). Об использовании быстродействующих датчиков давления в дизельной системе впрыска Common-Rail. Proc. 8-я биеннале ASME Conf. Проектирование и анализ инженерных систем .

    Google Scholar

  • Амиранте Р., Каталано Л. А., Полони К. и Тамбуррано П. (2014). Гидродинамическая оптимизация конструкции гидрораспределителей пропорционального действия. Инженерная оптимизация
    46 , 10 , 1295–1314.

    Артикул

    Google Scholar

  • Амиранте Р. и Тамбуррано П. (2014). Высокотемпературный газо-газовый теплообменник на твердой промежуточной среде. Успехи в машиностроении , Артикул 353586.

    Google Scholar

  • Бай, Ю., Фан, Л. Ю., Ма, Х. З., Пэн, Х. Л., Сон, Э. З. (2016). Влияние параметров форсунки на количество впрыска в системе впрыска Common Rail для дизельных двигателей. Внутр. J. Автомобильные технологии
    17 , 4 , 567–579.

    Артикул

    Google Scholar

  • Карлуччи, А. П., Де Ризи, А., Лафорджа, Д. и Наккарато, Ф. (2008). Экспериментальное исследование и анализ горения двухтопливного дизельного двигателя с прямым впрыском на природном газе. Энергия
    33 , 2 , 256–263.

    Артикул

    Google Scholar

  • Каталано, Л.А., Тондоло В. А. и Дадоне А. (2002). Динамический рост давления в системе впрыска Common-Rail. SAE Paper No. 2002-01-0210.

    Google Scholar

  • Катания, А. Э., Феррари А., Манно М. и Спесса Э. (2008). Экспериментальное исследование влияния динамики на производительность системы Common Rail с многократным впрыском. J. Разработка газовых турбин и энергетики
    130 , 3 , 032806.

    Артикул

    Google Scholar

  • CeliKten, I. (2003). Экспериментальное исследование влияния давления впрыска на характеристики двигателя и выброс выхлопных газов в дизельном двигателе с непрямым впрыском. Прикладная теплотехника
    23 , 16 , 2051–2060.

    Артикул

    Google Scholar

  • Чанг, Дж., Ким, М. и Мин, К. (2002). Обнаружение пропусков зажигания и детонации в двигателях с искровым зажиганием с помощью вейвлет-преобразования сигналов вибрации блока цилиндров. Измерительная наука и техника
    13 , 7 , 1108.

    Артикул

    Google Scholar

  • Чой, С., Мён, К. Л. и Пак, С. (2014). Обзор характеристик выбросов наночастиц и морфологии ТЧ из двигателей внутреннего сгорания: Часть 2. Внутр. J. Автомобильные технологии
    15 , 2 , 219–227.

    Артикул

    Google Scholar

  • Чанг, Дж., Мин, К. и Суну, М. (2016). Эмпирическая модель NOx в реальном времени, основанная на измерениях давления в цилиндрах для дизельных двигателей малой мощности. Внутр. J. Автомобильные технологии
    17 , 4 , 549–554.

    Артикул

    Google Scholar

  • Эом, Д.С., Кан, С. Х. и Ли, С. В. (2017). Характеристики выбросов наночастиц и стратегии сокращения выбросов за счет контроля давления наддува и стратегий впрыска в легковом дизельном двигателе. Внутр. J. Автомобильные технологии
    18 , 1 , 1–17.

    Артикул

    Google Scholar

  • Фан, К., Биан, Дж., Лу, Х., Тонг, С. и Ли, Л. (2014). Обнаружение пропусков зажигания и управление повторным зажиганием с помощью обратной связи по сигналу ионного тока при холодном пуске в двухступенчатых двигателях с прямым впрыском. Внутр. J. Исследования двигателя
    15 , 1 , 37–47.

    Артикул

    Google Scholar

  • Ficarella, A., Laforgia, D. и Landriscina, V. (1999). Оценка явлений нестабильности в системе впрыска Common Rail для высокоскоростных дизельных двигателей. Документ SAE № 1999-01-0192.

    Google Scholar

  • Яннадакис, Э., Гавайсес, М. и Аркуманис, К. (2008). Моделирование кавитации в форсунках дизельных двигателей. J. Гидромеханика,
    616 , 153–193.

    Артикул
    МАТЕМАТИКА

    Google Scholar

  • Хеймгертнер, К. и Лейперц, А. (2000). Исследование первичного разбрызгивания вблизи форсунки системы впрыска дизельного топлива высокого давления с общей топливораспределительной рампой. SAE Paper No. 2000-01-1799.

    Google Scholar

  • Ху, К., Ли, А. и Чжао, X. (2011). Стратегия многомерного статистического анализа для обнаружения множественных пропусков зажигания в двигателях внутреннего сгорания. Механические системы и обработка сигналов
    25 , 2 , 694–703.

    Артикул

    Google Scholar

  • Лим, О. Т. и Ли, С. Дж. (2016).Влияние диаметра отверстия сопла и диаметра сопла на распыл Dme для получения аналогичной теплотворной способности с распылением дизельного топлива с использованием камеры постоянного объема. Внутр. J. Автомобильные технологии
    17 , 6 , 1023–1031.

    Артикул

    Google Scholar

  • Лю Б., Чжао К., Чжан Ф., Цуй Т. и Су Дж. (2013). Обнаружение пропусков зажигания дизельного двигателя с турбонаддувом с помощью искусственных нейронных сетей. Прикладная теплотехника
    55 , 1 , 26–32.

    Артикул

    Google Scholar

  • Лю В. и Ван Дж. (2012). Моделирование регулирования давления в магистрали Common Rail в системе впрыска топлива высокого давления. Внутр. Proc. Компьютерные науки и информационные технологии,
    51 , 508.

    Google Scholar

  • Марсер, Р., Audiffren, C., Viel, A., Bouvier, B., Walbott, A. и Argueyrolles, B. (2010). Соединение одномерных моделей AMESim и 3D CFD EOLE для моделирования впрыска дизельного топлива. 23-я ежегодная конф. Системы жидкого распыления и распыления .

    Google Scholar

  • Мён, К. Л., Ко, А. и Парк, С. (2014). Обзор характеристик выбросов наночастиц и морфологии ТЧ из двигателей внутреннего сгорания: Часть 1. Int. J. Автомобильные технологии
    15 , 2 , 203–218.

    Артикул

    Google Scholar

  • О, К. и Ча, Г. (2015). Влияние топлива, типа впрыска и системы доочистки на выбросы твердых частиц от легковых автомобилей, использующих различные виды топлива, в испытательных циклах FTP-75 и HWFET. Внутр. J. Автомобильные технологии
    16 , 6 , 895–901.

    Артикул

    Google Scholar

  • Папагианнакис, Р.Г., Хунталас, Д. Т. и Ракопулос, К. Д. (2007). Теоретическое исследование влияния количества пилотного топлива и момента его впрыска на производительность и выбросы двухтопливного дизельного двигателя. Преобразование энергии и управление
    48 , 11 , 2951–2961.

    Артикул

    Google Scholar

  • Прель, К., Ламарк, Ф. и Ревель, П. (2006). Отражающий оптический датчик для перемещения на большие расстояния с высоким разрешением. Датчики и приводы A: Физические
    127 , 1 , 139–146.

    Артикул

    Google Scholar

  • Сейкенс, X. Л. Дж., Сомерс, Л. М. Т. и Бэрт, Р. С. Г. (2004). Моделирование системы впрыска Common Rail и влияние свойств жидкости на процесс впрыска. Proc. ВАФСЕП , 6–9.

    Google Scholar

  • Сейкенс, Х.Л. Дж., Сомерс, Л. М. Т. и Бэрт, Р. С. Г. (2005). Детальное моделирование процесса впрыска топлива Common Rail. MECCA
    3 , 2-3 , 30–39.

    Google Scholar

  • Сенкевич Ф. и Шукла А. (1997). Простой оптоволоконный датчик для использования в большом диапазоне перемещений. Оптика и лазеры в технике
    28 , 4 , 293–304.

    Артикул

    Google Scholar

  • Сух, Х. К. и Ли, К. С. (2008). Экспериментальное и аналитическое исследование характеристик распыления диметилового эфира (DME) и дизельного топлива в системе впрыска Common Rail в дизельном двигателе. Топливо
    87 , 6 , 925–932.

    Артикул

    Google Scholar

  • Штумпп, Г.и Рикко, М. (1996). Common Rail — привлекательная система впрыска топлива для дизельных двигателей DI легковых автомобилей. Бумага SAE № 960870.

    Google Scholar

  • Танака Т., Андо А. и Ишизака К. (2002). Исследование пилотного впрыска дизельного двигателя DI с использованием системы впрыска Common-Rail. Обзор JSAE
    23 , 3 , 297–302.

    Артикул

    Google Scholar

  • Ванегас, А.и Петерс, Н. (2009). Экспериментальный анализ влияния очень раннего пилотного впрыска на образование загрязняющих веществ для дизельного двигателя PCCI. На пути к чистым дизельным двигателям: 7-е межд. Symp. , Ахен, Германия.

    Google Scholar

  • Вирди, М. (2004). Субнанометрическое прецизионное определение смещения с использованием маломассивных и шероховатых поверхностей в качестве подвижных целей. Оптика и лазерные технологии
    36 , 2 , 107–115.

    Артикул

    Google Scholar

  • Ван Ф., Хе З., Лю Дж. И Ван К. (2015). Геометрия сопла дизельного двигателя зависит от характеристик струи с моделью струи в сочетании с кавитирующим потоком сопла. Внутр. J. Автомобильные технологии
    16 , 4 , 539–549.

    Артикул

    Google Scholar

  • Сюй, М., Сунь, Ю.С., Цуй, Ю., Дэн, К. Ю., Ши, Л. (2016). Одномерная модель проникновения топлива в брызгах дизельного топлива с потоком газа. Внутр. J. Автомобильные технологии
    17 , 1 , 109–118.

    Артикул

    Google Scholar

  • Мониторинг сигналов форсунок дизельного двигателя в режиме реального времени для точного измерения и контроля топлива может быть легко откалиброван для различных платформ двигателей, а затем по обратной связи соответствующий объем заправки передается компьютеру в реальном времени в контроллере с обратной связью на стенде контура (CIL) для достижения оптимальной заправки.В этом исследовании используются программируемые вентильные матрицы (FPGA) и возможность передачи данных с прямым доступом к памяти (DMA) для достижения высокой скорости сбора и доставки данных. Эта работа проводится в два этапа: первый этап заключается в изучении изменчивости количества впрыскиваемого топлива от импульса к импульсу, от инжектора к инжектору, между реальными статорами инжектора и тензодатчиками индуктора и в различных условиях эксплуатации. Для определения наилучшего порогового значения начала впрыска (SOI) и порога конца впрыска (EOI) использовались различные пороговые значения, которые позволяют фиксировать «вовремя» инжектора с максимальной надежностью и точностью.Второй этап включает разработку системы, которая преобразует импульс форсунки в количество топлива. Система легко калибруется для различных платформ. Наконец, было замечено, что использование результирующей таблицы поправок позволяет фиксировать количество топлива с максимальной точностью.

    1. Введение

    Для дальнейшего повышения топливной экономичности дизельного двигателя крайне важно использовать оптимальное количество впрыскиваемого топлива, которое будет обеспечивать требуемую мощность при соблюдении требований по выбросам.По этой причине большинство производителей дизельных двигателей, таких как Cummins, Inc., используют испытание с обратной связью на стенде аппаратного обеспечения (HIL), что является очень важным шагом в тестировании производительности дизельных двигателей. Для проведения анализа производительности системы модель двигателя и всех других компонентов транспортного средства запускается на компьютере в реальном времени, который имитирует реальное транспортное средство. В ECM в реальном времени поступают все сигналы датчиков, которые он ожидает в реальном автомобиле, от эмулируемых датчиков с использованием необходимого оборудования.Однако модель в реальном времени не может правильно запустить моделирование в реальном времени с обратной связью без точной информации о количестве нагнетаемого топлива. Контроллер ЭСУД рассчитывает желаемое количество топлива с помощью алгоритма управления, который учитывает все необходимые сигналы обратной связи датчиков на каждом временном шаге. Наконец, «вовремя» форсунки, количество времени, в течение которого форсунка должна впрыснуть топливо в цилиндр, ищется в таблице своевременности подачи топлива, соответствующей количеству топлива, которое должно быть впрыснуто, и работающей общей топливной магистрали. давление.Соответствующий электрический импульс посылается на статоры форсунок или тензодатчики индуктора, которые имитируют форсунки. Это исследование исследует, подходят ли индукторы вместо инжекторов для использования на стенде с замкнутым контуром, если могут быть приняты необходимые корректирующие меры для принятия этого более дешевого решения. Он также исследует различные пороговые значения, чтобы определить тот, который лучше всего работает для правильного определения «своевременности». Результаты экспериментов показывают, что схема с двойным порогом, с началом впрыска при 0.1 В и конец впрыска при 3 В, фиксирует время включения с наименьшим количеством ошибок.

    Эта работа включает использование системы сбора данных на основе FPGA, имеющей различные подходы к пороговым значениям с различными конфигурациями схемотехники FPGA. Аппаратное обеспечение FPGA позволяет использовать свои предварительно созданные логические блоки и программируемые ресурсы маршрутизации для настройки кремниевых микросхем для реализации пользовательских аппаратных функций [1], обеспечивая скорость и надежность с аппаратной синхронизацией. Моделирование HIL в реальном времени требует скорости и надежности с аппаратной синхронизацией, что является причиной выбора оборудования FPGA.Reyneri et al. [2] представили свою работу с полным испытательным стендом HIL для системы впрыска Common Rail, где они продемонстрировали методику кодирования, которая объединяет кодовую схему и совместное моделирование оборудования (HW) и программного обеспечения (SW), составляющих стенд HIL. В испытательном стенде они использовали восемь процессоров FPGA, один ПК, одну аналого-цифровую (A / D), цифро-аналоговую (D / A) плату и плату сбора данных в дополнение к тесту Common Rail. стенд и совместное моделирование в среде CodeSimulink.Предварительно заданная форма волны напряжения, вычисленная на основе требуемой формы волны тока и электрической модели форсунки, была отправлена ​​на форсунки. Их работа была сосредоточена на тестировании характеристик ECM, что требует измерения количества впрыскиваемого топлива и обратной связи с программным моделированием, работающим в RT, что отличается от работы, которую мы ей представляем. Авторы [2] использовали специальный аппаратный генератор сигналов на базе FPGA, который питал H-мосты для инжекторов. Они использовали генерацию сигнала тока без обратной связи.Однако они настроили тензодатчики индуктивности, то есть цепи R-L, с расчетными значениями R и L. Они использовали нейро-нечеткие методики, которые характеризовали форсунки, то есть электрические параметры, чтобы настроить датчики нагрузки индуктора, которые позволяли им взвешивать впрыскиваемое топливо с помощью более дешевых датчиков нагрузки и при этом получать желаемую точность. Аппаратные средства FPGA и 8-канальный аналого-цифровой преобразователь с частотой дискретизации около 20 кГц использовались в процессе определения характеристик инжектора.

    Saldaña-González et al.В [3] представлена ​​аппаратная реализация на основе ПЛИС, которая принимает оцифрованные сигналы напряжения, создаваемые электроникой сбора данных фотоэлектронных умножителей, и обрабатывает их, чтобы позволить идентифицировать события. Затем данные использовались для определения силы и положения взаимодействий на основе логики Гнева для формирования плоского изображения, которое позволяет реконструировать 2D-изображение для медицинской диагностики в гамма-камере в реальном времени. Позняк [4] представил применение ПЛИС — основанных на многоканальных распределенных синхронных системах измерения для запуска и сбора данных, используемых в экспериментах по физике высоких энергий (HEP).Turqueti et al. [5] представили дизайн и реализацию МЭМС-матрицы из 52 микрофонов, встроенной в платформу FPGA с возможностями обработки в реальном времени.

    Целью этого исследования является изучение изменчивости и неточности, присущих процессу мониторинга форсунок с использованием различных подходов, и заключение наиболее рентабельной и достаточно точной системы. В исследовании изучается изменчивость системы измерения расхода топлива, используемой для замыкания контура между моделями установки и ECM на стенде CIL.Мы также исследуем, подходят ли датчики нагрузки индуктора, которые имитируют форсунки, для использования на стенде CIL, и какой компромисс необходим для использования более дешевых индукторов вместо форсунок, и показывают ли датчики нагрузки индуктора или форсунки определенное смещение, которое может корректироваться на скамейках путем правильной настройки. Другая цель — определить, насколько вариативны от импульса к импульсу, от инжектора к инжектору и в различных рабочих условиях. Наконец, систему необходимо легко калибровать для использования с разными платформами.Следовательно, необходима последовательность испытаний для создания таблицы поправок, которая сможет фиксировать количество заправленного топлива с максимально возможной точностью в пределах ограничений аппаратного обеспечения. Это исследование также направлено на сокращение задержки при доставке данных и повышение надежности системы CIL.

    2. Экспериментальная установка

    Производительность дизельного двигателя, как с точки зрения топливной экономичности, так и выбросов, в значительной степени зависит от топливной системы, которая подает топливо в цилиндр двигателя, которая заботится о точном контроле момента впрыска, корректируя давление впрыска для обеспечения надлежащего смешивания воздуха и топлива с учетом правильного распыления топлива и других критических параметров.Двигатели Cummins контролируются для обеспечения точного управления впрыском топлива в цилиндр с помощью усовершенствованной топливной системы, состоящей из Common Rail, насоса и высокоточных форсунок. Необходимость снижения расхода топлива, выбросов выхлопных газов и шума двигателя привела к использованию передовых технологий в топливных системах, заменяющих механическую систему впрыска.

    Как правило, в архитектуре Common Rail используется общий аккумулятор давления или накопитель высокого давления, называемый Rail.Эта рейка питается от топливного насоса высокого давления, который может работать с частотой вращения коленчатого вала (частота вращения двигателя или удвоенная частота вращения распределительного вала). Иногда радиальный насос высокого давления, независимо от мощности двигателя, создает высокое давление в рампе. Линии впрыска высокого давления соединяют общую топливную рампу с топливными форсунками. ЕСМ контролирует давление в рампе через впускной дозирующий клапан (IMV). Контроллер ЭСУД генерирует импульс впрыска, который управляет открытием форсунок с помощью электромеханических приводов.Контроллер ЭСУД рассчитывает необходимое количество топлива на основе заранее заданной характеристической кривой, модели двигателя, намерений водителя через положение акселератора, скорость двигателя, крутящий момент, температуру, ускорение и т. Д. Электронное управление обеспечивает гибкость в регулировке времени впрыска и дозирования, уменьшает изменчивость от цикла к циклу и от цилиндра к цилиндру, а также обеспечивает более жесткие допуски на управление и повышенную точность в течение очень длительных периодов работы. На рисунке 1 показана схема архитектуры Common Rail системы впрыска топлива [6].

    Система Common Rail включает в себя следующие компоненты (Рисунок 1): (i) топливный насос высокого давления, (ii) рейка для хранения и распределения топлива, (iii) форсунки, (iv) электронный блок управления (ECM).

    Рейка служит топливным аккумулятором для поддержания относительно постоянного давления при всех уровнях заправки, используемых двигателем. Объем топлива в рампе также гасит колебания давления, вызванные насосом высокого давления и процессом впрыска. Из рампы топливо под постоянным давлением подается в форсунки по трубкам высокого давления.Контроллер ЭСУД генерирует импульсы тока, которые последовательно активируют каждый электромагнитный клапан форсунок и определяют начало и конец каждого события впрыска за цикл двигателя. Система Common Rail может производить более одного впрыска за цикл двигателя и обеспечивать более гибкий контроль скорости впрыска по сравнению с другими конструкциями систем впрыска.

    Это исследование обращается к самому важному атрибуту системы впрыска топлива, то есть к дозировке правильного количества топлива в цилиндр, при применении HIL-тестирования алгоритма управления.Система управления разработана для расчета правильного количества топлива, которое будет впрыскиваться топливной системой с точки зрения количества топлива, которое реализуется топливной системой путем преобразования количества топлива в продолжительность впрыска во времени для впрыска топлива с заданным общим значением. давление в рампе. Чтобы выполнить аппаратное обеспечение в моделировании контура, имитационная модель нуждается в точном измерении впрыскиваемого топлива, чтобы выполнить точный расчет для имитации работы двигателя. Контроллер ЭСУД генерирует сигнал заправки в виде электрического импульса, подаваемого на форсунки.Форма волны напряжения представляет собой высокое начальное повышающее напряжение для преодоления инерции механики инжектора, за которым следует более низкое постоянное напряжение, которое удерживает сопло инжектора в открытом положении в течение желаемого периода времени. Аппаратное обеспечение, используемое в этом исследовании, воспринимает этот электрический импульс, и система в реальном времени, которая использует индивидуальные особенности FPGA, а передача прямого доступа к памяти преобразует импульс обратно в количество топлива. Электрический сигнал, регистрируемый датчиками, не указывает четко на начало и конец впрыска, что является критическим параметром, который необходимо выяснить в этом исследовании, чтобы рассчитать наиболее точное измерение времени включения форсунки.Время включения форсунки, то есть период времени, в течение которого форсунка остается открытой для впрыска топлива. Захваченный импульс впрыска показан на рисунке 2. В идеале время включения впрыска соответствует промежутку времени между моментом, когда сигнал инжектора начинает расти с нулевого значения, и моментом, когда он начинает падать с удерживаемого постоянного значения напряжения. в период инъекции. На рисунке 2 четко обозначена проблема, связанная с определением начала и конца инъекции.

    Начало впрыска можно определить по значению напряжения более 0 В; однако связанный с этим шум вызывает ошибку в идентификации. С другой стороны, постоянное значение напряжения, поддерживаемое во время открытия инжектора, заметно зашумлено, и подходы, принятые для определения конца впрыска, заключались в рассмотрении крутизны падения напряжения или определении порогового значения. Последний подход оказался более подходящим в сочетании с определением порога, позволяющего также различать начало закачки.

    Еще одним важным параметром, исследуемым в этом исследовании, является изменчивость импульсов инжектора, захваченных предлагаемым методом. Важность доставки правильного количества топлива и единообразия очень важна в тестировании аппаратного обеспечения в цикле, поскольку цель использования моделирования вместо реального двигателя и оборудования в значительной степени заключается в повторяемости тестов в дополнение к снижению затрат. Для определения повторяемости системы контроля импульсов впрыска в качестве индикатора использовалось стандартное отклонение зафиксированного времени.Количество топлива, впрыскиваемого контроллером ЭСУД, было отменено через шину CAN, при этом система фиксировала его. Ожидается, что идентифицируемое количество топлива будет точно таким же, как отменяемое значение. Однако внутренняя изменчивость была рассчитана по стандартному отклонению. На более позднем этапе исследования время своевременного впрыска было напрямую изменено вместо количества топлива. Своевременность поддерживалась на стабильном уровне, и система регистрировала своевременность, зафиксированную предложенной системой.Различная вариабельность была получена при разных подходах к своевременному улавливанию закачки.

    Исследование было направлено на определение оптимального подхода с точки зрения затрат на внедрение, точности, повторяемости и вариативности, необходимого для определения правильного количества топлива, впрыскиваемого форсункой.

    Модуль аналогового ввода NI-9205 вместе с аппаратным обеспечением программируемых вентильных матриц (FPGA) Xilinx Virtex-5 и возможностью передачи прямого доступа к памяти (DMA) в компактном реконфигурируемом контроллере ввода-вывода (CRIO) в реальном времени (RT) , использовался для захвата сигнала напряжения форсунки, генерируемого контроллером ЭСУД.Поскольку модуль аналогового ввода имеет спецификацию ± 10 В, а пиковое напряжение сигнала инжектора составляет 12 В, для захвата сигналов использовались делители напряжения с соотношением 2 В: 1 В. Аналоговые сигналы регистрировались с разной скоростью сбора данных, а сигналы напряжения подвергались постобработке в MATLAB для получения своевременности с различными подходами к пороговой обработке на первом этапе исследования. Изменчивость от выстрела к выстрелу, то есть изменение количества захваченного топлива от импульса к импульсу, сравнивали со стандартным отклонением в различных подходах к пороговой обработке, а также в различных рабочих условиях.Различные рабочие условия включают разные обороты двигателя, давление в общем распределителе, количество топлива и датчики нагрузки инжектора или индуктора на всех шести инжекторах или индукторах. На втором этапе было построено, скомпилировано и развернуто в реальном времени приложение реального времени вместе с потоком битов FPGA, который запечатлел желаемую схему в аппаратном обеспечении, которая могла интерпретировать количество топлива по аналоговым сигналам. Схема FPGA позволяла генерировать сигнал частоты вращения двигателя (ESS) и сигнал положения двигателя (EPS) для имитации частоты вращения двигателя.

    Поскольку сигнал форсунки, генерируемый контроллером ЭСУД, важен в данном исследовании, и не требуется весь стенд HIL для тестирования замкнутого контура, для этого исследования был разработан отдельный стенд, позволяющий проводить тесты в различных статических рабочих точках с различными переменными в среда тестирования без обратной связи. На рисунке 3 показана схема стенда, разработанного для данного исследования. Главный компьютер с Windows запускает тестовую последовательность, чтобы просмотреть различные значения различных рассматриваемых переменных.Программное обеспечение TestStand компании National Instrument использовалось для выполнения последовательности испытаний. Вначале тестовая последовательность устанавливает сеанс через CUTY (программный интерфейс), который позволяет главному компьютеру Windows обмениваться данными по каналу CAN. Программное обеспечение Cummins под названием Calterm использовалось для контроля параметров, которые были отменены на шине CAN.

    Электрический импульс, генерируемый контроллером ЭСУД, проходит через нагрузку, будь то настоящие статоры форсунок или индукторы, имитирующие форсунки в стенде CIL.В этом исследовании основное внимание уделяется интерпретации электрического сигнала, генерируемого блоком управления двигателем для форсунки, и предоставлению количества топлива, впрыснутого в модели RT. Поэтому ключевой задачей этого исследования является захват импульса инжектора с максимальной точностью по разумной цене. В ходе исследования выясняется, может ли система продолжать фиксировать правильное количество топлива, если контроллер ЭСУД дает команду на заправку в течение длительного периода времени. Сигнал аналогового инжектора можно преобразовать несколькими способами; тем не менее, исследование определило самый простой и эффективный способ его зафиксировать.Количество впрыскиваемого топлива или время включения форсунки было отменено с помощью программного обеспечения CUTY и шины CAN. Таким образом, компьютером реального времени, использованным в этом проекте, был Compact Reconfigurable Input Output (CRIO) National Instrument. CRIO содержит процессор реального времени с шасси со встроенными элементарными функциями ввода-вывода, такими как функция чтения / записи FPGA, которая обеспечивает интерфейс связи с высокооптимизированной реконфигурируемой схемой FPGA. Шасси содержало один модуль аналогового вывода для генерации эмулированного сигнала датчика давления в общей магистрали, модуль аналогового ввода для захвата сигнала напряжения форсунки и модуль цифрового вывода для генерации сигналов EPS и ESS.Главный компьютер Windows связывается с CRIO через соединение Ethernet. Для проведения тестов использовались National Instruments TestStand и LabVIEW. Приложения реального времени были скомпилированы, построены и развернуты в CRIO, включая битовые файлы FPGA, которые запечатлели необходимую индивидуальность FPGA. Автоматическая последовательность испытаний на NI Teststand устанавливает соединение с ECM через шину CAN с программным обеспечением CUTY для ECM. CUTY — это проприетарное программное обеспечение Cummins, которое использовалось для доступа к значениям параметров на шине CAN, а также для переопределения значений требуемых параметров.Последовательность Teststand игнорирует значение количества топлива, которое нужно впрыснуть, или время включения инжектора через канал передачи данных. Последовательность также обменивается данными по Ethernet-соединению с приложением реального времени, работающим на CRIO, для изменения моделируемой скорости двигателя с помощью сетевых переменных. Сигналы EPS / ESS, соответствующие смоделированным оборотам двигателя, генерируются персоналом FPGA в соответствии с углом поворота коленчатого вала двигателя. Контроллер ЭСУД требует сигнала давления в общей топливной рампе и сигналов EPS / ESS на соответствующих контактах для генерации сигнала форсунки.Давление в общей топливной рампе варьируется в зависимости от различных значений с помощью тестовой последовательности, выполняемой на NI Teststand на главном ПК, через соединение Ethernet для изменения значений в приложении реального времени, запущенном на CRIO. Соответствующий сигнал датчика давления генерируется модулем аналогового вывода путем имитации датчика. На разных этапах эксперимента были разработаны разные тестовые последовательности. Приложение реального времени содержало индивидуальные данные FPGA, которые генерировали требуемый сигнал EPS / ESS, соответствующий частоте вращения двигателя; приложение RT переключало разные каналы аналоговых модулей, поскольку аналоговый модуль имел только один аналого-цифровой преобразователь, выполняющий передачу DMA (прямой доступ к памяти) из модуля FPGA в память компьютера RT.Он создавал отдельные файлы для каждого штата. «Разные состояния» относятся к разным оборотам двигателя, разному давлению в общей топливной рампе, разному количеству топлива или «времени работы», которое игнорируется в ECM, в случае статоров форсунок или индукторов.

    На рисунке 4 показаны форсунки, индукторы и аппаратное обеспечение FPGA. В ходе исследования выяснилось, подходят ли катушки индуктивности для испытаний с обратной связью, и было обнаружено, что это не так. Статоры форсунок использовались от серийных форсунок двигателей Cummins.Стендовое оборудование, изготовленное Cummins, обеспечивало электрическую защиту и необходимые системы для преобразования сетевого напряжения в низкое напряжение постоянного тока для питания электронных схем и источников питания высокого напряжения, а также для управления электрическими форсунками или тензодатчиками. NI CRIO-9014 [7] вместе с шасси NI 9111, имеющим платы аналогового вывода, аналогового ввода и цифрового ввода / вывода, показан на правой стороне оборудования в [8]. Модуль аналогового ввода NI 9205 [9] был ключевой особенностью этого исследования. Особенности NI 9205: 32 несимметричных или 16 дифференциальных аналоговых входов, разрешение 16 бит и максимальная частота дискретизации 250 кГц / с.Каждый канал имеет программируемые входные диапазоны ± 200 мВ, ± 1, ± 5 и ± 10 В. Для защиты от переходных процессов сигнала NI 9205 включает до 60 В защиты от перенапряжения между входными каналами и общим (COM). Кроме того, NI 9205 также включает двойной изолирующий барьер канал-земля-земля для обеспечения безопасности, помехоустойчивости и высокого диапазона синфазных напряжений. В 4-слотовом шасси CRIO-9111 [8] установлено ядро ​​ПЛИС с реконфигурируемым вводом-выводом Xilinx Virtex-5, способное автоматически синтезировать настраиваемые схемы управления и обработки сигналов с помощью LabVIEW.В исследовании использовался модуль аналогового вывода NI 9264 [10] для генерации сигнала давления, чтобы имитировать датчик давления. Контроллер ЭСУД требует сигнала давления для расчета времени включения форсунки (мс) для впрыска определенного количества топлива. В исследовании также использовался 8-канальный высокоскоростной двунаправленный цифровой модуль ввода-вывода NI 9401 [11], 5 В / TTL, для генерации сигнала положения двигателя (EPS) и сигнала частоты вращения двигателя (ESS) для подачи в ECM смоделированной частоты вращения двигателя. Испытательная установка включает шесть делителей напряжения для обеспечения напряжения, подаваемого аппаратными средствами в модуль NI 9205 [9].Другое оборудование, используемое на стенде, — это внутренний источник питания для ECM и электрического оборудования, осциллограф Tektronix TDS 2024B, адаптер PEAK для преобразования сообщений CAN и их передачи в компьютер, терминаторы CAN для установки шины CAN и т. Д.

    В данном исследовании используется система CRIO, предлагаемая National Instruments. Он содержит интегрированный контроллер реального времени и шасси с коммуникационным интерфейсом с высоко оптимизированной реконфигурируемой схемой FPGA, которая содержит слоты для различных используемых модулей.National Instruments помогает пользователям, участвующим в разработке мехатронных систем управления, предоставляя аппаратные и программные решения для ускорения разработки и тестирования таких систем. Это поддерживает создание приложений реального времени в LabVIEW, создание и развертывание файлов в системе RT для реализации среды реального времени для любой пользовательской HIL Bench, которая попадает под целевые критерии ввода-вывода. Система CRIO, используемая в этом исследовании, представляет собой систему реального времени для выполнения быстрого прототипирования функций.CRIO-9014 запускает модуль реального времени NI LabVIEW в операционной системе реального времени (RTOS) VxWorks для обеспечения максимальной надежности и детерминизма. С контроллером реального времени CRIO-9014 можно использовать ведущую технологию VxWorks RTOS для быстрого проектирования, создания прототипа и развертывания настраиваемой коммерчески доступной встроенной системы (COTS) с использованием инструментов графического программирования LabVIEW.

    3. Результаты экспериментов

    Эксперименты проводились на экспериментальном стенде, чтобы найти наиболее рентабельное, эффективное, перекалибруемое и воспроизводимое решение проблемы контроля форсунок со следующими рассматриваемыми переменными параметрами: (i) количество топлива или время включения форсунки (мс), (ii) частота вращения двигателя, (iii) давление в общем топливном распределителе, (iv) две разные нагрузки, то есть форсунки или экономичные индукторы для имитации форсунок, (v) шесть различных форсунок или индукторов, (vi) разные пороги.Чтобы реализовать систему мониторинга форсунок в системе аппаратного обеспечения, система должна поддерживать хорошую точность при регистрации правильного количества топлива в большом диапазоне заправки топливом, оборотов двигателя и давления в общей топливной магистрали. с минимальными вариациями. В ходе исследования также выясняется, изменяется ли точность от инжектора к инжектору. Поскольку система, если она удовлетворяет требованиям, будет реализована на большом количестве программных стендов аппаратного обеспечения, стоимость внедрения также является важным фактором, который следует учитывать.

    Исследование начинается с изменения всех переменных и последовательного исключения некоторых вариаций, если обнаружено, что они имеют незначительное влияние на точность системы. Оборудование для сбора данных, доступное от NI, имело ограничение по частоте дискретизации. Таким образом, изначально для всех шести каналов использовался только один модуль NI-9205 с частотой дискретизации 20,8 кГц на каждом канале.

    Чтобы идентифицировать начало и конец нагнетания, были рассмотрены различные пороговые значения, сужаясь до наиболее эффективного подхода.Первоначально конец инжекции определялся с помощью наклона импульса инжекции, что было не очень удачно из-за шума, присутствующего в захваченном сигнале. Следовательно, для идентификации SOI и EOI использовались пороги, имеющие только один порог для обоих концов или два порога. Первоначальные эксперименты показывают, что влияние изменения давления в общей топливной рампе сравнительно незначительно. Поэтому испытания проводились при различных оборотах двигателя и количествах топлива с разными подходами к пороговым значениям для обоих видов нагрузок.Частота дискретизации оказалась наиболее важным фактором точности системы. Поскольку время включения форсунки остается неизменным с постоянным количеством топлива при различных оборотах двигателя, ожидалось, что она будет иметь такую ​​же точность. Однако экспериментальные результаты показывают, что точность варьируется в зависимости от частоты вращения двигателя.

    Первоначально испытания показали, что точность системы не сильно зависит от давления в общей топливной рампе; поэтому испытания проводились при давлении в общей топливной рампе 1200 бар при различных оборотах двигателя и количествах топлива как для статоров форсунок, так и для индукторов, по шесть каждого из них.Импульсы инжекции регистрировались в виде дискретных значений напряжения с частотой дискретизации 20,8 кГц на каждом канале инжектора с точностью до 1 В, которая позже была увеличена до значения точности 0,0156 В. Значения напряжения впрыска регистрировались в формате .tdms. Сценарий DIAdem для анализа данных National Instrument был использован для преобразования файлов .tdms в файлы .mat с целью постобработки данных в MATLAB. «Своевременность» заправки извлекалась с использованием различных одинарных или двойных пороговых значений в MATLAB.Подход с одним порогом использует одно и то же пороговое значение как для начала закачки (SOI), так и для конца закачки (EOI). Пороговое значение SOI — это значение, определяющее, когда началось впрыскивание; то есть, как только значение напряжения превышает пороговое значение SOI, впрыск считается начавшимся. Точно так же порог EOI — это значение, которое определяет, когда инъекция закончилась, то есть, как только значение напряжения опускается ниже порога EOI, инъекция считается завершенной.На первом этапе эксперимента подход с двойным порогом рассматривал EOI в точке, где значение напряжения начинает падать от постоянного значения; то есть вместо использования порога для идентификации EOI код учитывал пять последовательных точек данных, и если значение напряжения продолжало падать через пять точек, третья точка считалась точкой EOI. Последовательность проверки охватывает различные значения частоты вращения двигателя и количества топлива, которое необходимо впрыскивать. Длина извлеченных импульсов измеряется в миллисекундах.Среднее значение всех длин импульсов рассчитывается для каждого канала инжектора в каждом состоянии, как для инжекторов, так и для индукторов. Ожидаемое «вовремя» заправки — это значение, переопределенное в блоке управления двигателем. Следовательно, ошибка количества заправленного топлива была рассчитана в каждом из состояний по средним значениям с использованием следующего уравнения.
    Двойной порог и одинарный порог при 2 В показали меньшие отклонения от импульса к импульсу; однако это изменение заметно при оборотах двигателя 1500 и 3000 об / мин.Среднее значение процентных ошибок в каждом состоянии было рассчитано и нанесено на график для сравнения производительности системы с инжекторами или индукторами, используемыми в качестве нагрузок. На следующих графиках показано сравнение с различными пороговыми подходами. Рисунки 5 (a), 5 (b) и 6 показывают, что ошибок индукторов намного больше, чем ошибок инжекторов. Они означают тот факт, что, если более дешевое решение, то есть индукторы, используются в качестве нагрузки, вместо использования шести производственных инжекторов для каждого стенда, единый порог на 2 В является лучшим вариантом.Однако форсунки показывают лучшие результаты при подходе с двойным порогом. Эти экспериментальные результаты открывают путь для дальнейших экспериментов, чтобы исследовать производительность системы с более высокой точностью и более высокой частотой дискретизации. Эти графики дают нам представление о том, сколько ошибок можно ожидать, если мы их реализуем. Однако% ошибки неприемлемо для приложения CIL, поскольку приложение CIL требует более высокой точности при таком низком количестве топлива, как 10 мг / стк при более низком давлении ниже 1200 бар, что, безусловно, приведет к гораздо большей ошибке.

    Из предыдущего экспериментального результата очевидно, что использование наивысшей доступной частоты дискретизации с двойным порогом обеспечивает наилучшую оценку рассчитанного количества топлива с помощью контроллера ЭСУД; однако в этом процессе есть вариативность. Чтобы внедрить эту систему в стенд HIL, очень важно знать вовлеченную изменчивость и факторы, которые способствуют изменчивости, чтобы быть уверенным в системе. И в будущем можно будет искать модель коррекции, чтобы сделать систему максимально точной во всем рабочем диапазоне.Были идентифицированы три фиксированных фактора, то есть частота вращения двигателя, давление в общей топливной рампе и количество топлива на различных уровнях в таблице 1. Пятьдесят повторов, то есть импульсы были собраны по рандомизированной последовательности уровней факторов, были собраны с использованием двойного порога с SOI на 0,5 В и EOI при 2 В, с шестью инжекторами, а также шестью индукторами.

    9010 9010

    9010

    902 также показали различия в производительности, однако шесть форсунок / индукторов считаются случайным фактором, поскольку ожидается, что они будут идентичными, и только вариативность, связанная с производственным процессом форсунок, способствует изменчивости в точности оцененного количества топлива системой.

    Был проведен полный факторный план эксперимента (DOE) с рандомизированным порядком выполнения фиксированных факторов как на форсунках, так и на индукторах, при этом процент ошибок в оценке количества топлива является переменной отклика. Результат DOE с 95% доверительным интервалом показал, что все фиксированные факторы и взаимодействия способствовали отклонению нулевой гипотезы о том, что данные, собранные на всех уровнях всех факторов, представляют естественную изменчивость только одного процесса.Математическая модель этого эксперимента, в которой используется трехфакторный дисперсионный анализ (ANOVA) и план:

    где — частота вращения двигателя, — давление в общем распределителе, — количество топлива,,, от 1 до 50, и = 1, 2, 3, 4.

    Шесть форсунок и шесть индукторов были использованы в этом исследовании, и он имеет Было обнаружено, что вариабельность ошибки аналогична. Тем не менее, средний процент погрешности намного выше с индукторами, чем с реальными производственными инжекторами в качестве нагрузки на стенд HIL.На рисунке 7 показано, что процент ошибок значительно выше для индукторов, чем для форсунок, однако постоянство ошибки как для форсунок, так и для индукторов указывает на тот факт, что ошибку можно исправить с помощью алгоритма регрессии.

    На рис. 8 показано, что разница в средних процентах ошибок между форсунками и индукторами значительна, и ошибка изменяется в большем диапазоне в зависимости от давления в общей топливной магистрали с индукторами, чем с инжекторами.

    На рисунке 9 показано большое влияние количества заправляемого топлива на средний процент ошибок с индукторами в отличие от инжекторов. Однако средняя ошибка показывает устойчивую тенденцию, которую можно исправить с помощью алгоритма регрессии.

    Предыдущий анализ изменчивости показал, что изменчивость стандартного отклонения процента ошибки для форсунок на разных оборотах двигателя значительно (статистическая достоверность 95%) различна. от изменчивости всего процесса изменчивости с учетом фиксированных факторов.Однако включение шести форсунок и выполнение смешанной модели ANOVA выявило тот факт, что взаимодействие скорости двигателя и заправки топливом значительно увеличивает распределение изменчивости по сравнению с нормально распределенной изменчивостью всего процесса стандартного отклонения. Это означает, что, если частота вращения двигателя и заправка не меняются, стандартное отклонение ошибки сохраняет то же распределение вокруг средних стандартных отклонений процента ошибки. Взаимодействие частоты вращения двигателя и заправки дает статистически значимое различное распределение стандартного отклонения процента ошибки; то есть изменение давления или использование разных форсунок не влияет на изменчивость стандартного отклонения процента ошибки.С другой стороны, индукторы только с фиксированной факторной моделью показывают, что все фиксированные факторы подпадают под одно и то же нормальное распределение стандартного отклонения процента ошибки. Однако, когда была проведена смешанная модель ANOVA, она показала, что взаимодействие скорости двигателя со всеми другими тремя факторами, то есть давлением, количеством топлива и количеством индукторов, добавляет различное статистически значимое распределение. Следовательно, изменчивость системы зависит от всех переменных факторов, включая различные индукторы.Стандартное отклонение всех значений стандартных отклонений процента ошибки для форсунок в логарифмической шкале составляет 3,48534, а для индукторов стандартное отклонение всех значений стандартных отклонений процента ошибки в логарифмической шкале составляет 3,14255.

    Исследование включало разработку стендовой установки, которая способна тестировать производительность форсунок для мониторинга количества заправки, с автоматизированной последовательностью испытаний, которая охватывает все предопределенные рабочие точки устойчивого состояния, с использованием настраиваемых шагов в NI Teststand для установления связи через CUTY и CAN. шина для отмены значений параметров на ECM, а также мониторинг шины CAN, чтобы убедиться, что правильные значения регистрируются ECM с эмулируемых датчиков.Стенд использует индивидуальные особенности FPGA для моделирования вращения коленчатого вала двигателя путем генерации высокоскоростного сигнала EPS / ESS в дополнение к сигналу датчика давления. Стенд способен отслеживать аналоговый импульс форсунки, использовать двойные пороговые значения для регистрации своевременной заправки и снабжать модель двигателя, работающую на компьютере в реальном времени, правильными значениями количества заправки посредством высокоскоростной передачи прямого доступа к памяти с использованием метода FIFO. На этом стенде можно будет проводить дальнейшие исследования с различными типами форсунок, такими как форсунки, использующие пьезоэлектрическую технологию, без использования дорогостоящих ресурсов, то есть полнофункционального испытательного стенда с замкнутым контуром.Исследование показывает, что большое количество ошибок сохраняется, если один модуль AI используется для более чем одного мониторинга инжектора. Существуют определенные области работы с низкой ошибкой, поэтому более дешевое решение может быть выбрано для приложения, которое не работает в области с высокой ошибкой, или в тех случаях, когда проведенные тесты не подвержены этой высокой ошибке. Статистический анализ проводился на системе, в которой используется один модуль, позволяющий собирать данные на частоте 125 кГц на каждом инжекторе с дифференциальным входом, что является наиболее дорогостоящим решением для реализации на испытательном стенде HIL с замкнутым контуром.В исследовании также сравнивается производительность системы с производственным инжектором и тензодатчиками индукторов, которые имитируют инжекторы. Статистический анализ показывает, что дорогие форсунки могут быть заменены индукторными весоизмерительными датчиками, если в систему включен алгоритм коррекции ошибок, поскольку он показал ошибку около 40% при меньшем количестве заправки, что потенциально может вызвать нестабильное решение состояния холостого хода системы. моделирование двигателя на стенде. С другой стороны, форсунки работают с очень низким процентом ошибок, то есть -2.Погрешность от 38045% до 0,13551% со стандартным отклонением менее 4%, если только система не используется при частоте вращения двигателя 2250 об / мин. Дисперсионный анализ смешанной модели, который является относительно новым методом для проведения многомерного дисперсионного анализа, выявил тот факт, что вариабельность процента ошибок варьируется со статистической достоверностью 95% по различным значениям взаимодействия скорости двигателя и количества топлива, когда инжекторы производственного качества находятся в используется, в то время как значение изменяется в зависимости от воздействия на все четыре переменные, то есть скорость двигателя, количество топлива, давление и различные индукторы.

    4. Заключение

    На основании экспериментальных данных можно сделать вывод, что нагрузки инжектора являются лучшим выбором для стенда HIL для реалистичной имитации форм сигналов инжектора. Этот анализ также показывает, что вариабельность процента ошибок не зависит от давления в общем топливном распределителе или различных форсунок, что не относится к индукторам. Однако с точки зрения стандартного отклонения процента ошибки вариабельность не сильно отличается для форсунок или индукторов; то есть, если диапазон изменчивости приемлем для конкретного приложения испытания HIL, индукторы могут использоваться при условии, что алгоритм исправления ошибок включен в систему.Было обнаружено, что предложенная система способна уменьшить задержку при доставке количества топлива в тестах HIL с обратной связью на текущих стендах, которые вместо этого используют сообщение CAN. Кроме того, было обнаружено, что подход с двойным пороговым значением дает лучшую точность и меньшую вариативность в захвате правильного количества топлива.

    Leave a Reply

    Your email address will not be published.Required fields are marked *

    *


    Факторы Уровни

    Частота вращения двигателя (об / мин) 906 750 1500 1500600 1200 1800
    Количество топлива (мг / шт.) 10 50 100 150